How signals interact in multimodal displays: Insights from a robotic frog.

Beatriz Willink
Author Information
  1. Beatriz Willink: Department of Zoology, Stockholm University, Stockholm, Sweden. ORCID

Abstract

IN FOCUS: Caldart, M. V., M. B. dos Santos & G. Machado (2021). Function of a multimodal signal: a multiple hypothesis test using a robot frog Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13620. Animals can communicate using signals perceived by different sensory systems, and many combine multiple sensory modalities in their display repertoires. Why these multimodal displays evolve and how they function to transmit information between individuals are crucial questions in behavioural and evolutionary research. Most empirical studies addressing these questions assume, even if implicitly, that signals of different modalities have independent effects on receiver responses. Nonetheless, the potential for interactions between signals as an explanation for the function of multimodal displays has been recognized for over two decades. Caldart et al. (2021) use a robotic frog and a receiver-based approach to test four alternative hypotheses for the function of multimodal (acoustic + visual) displays in the stream-dwelling frog Crossodactylus schmidti. Their results lend support to an inter-signal interaction mechanism, whereby inclusion of visual signals modifies the context in which an acoustic display is interpreted. In contrast, the results in Caldart et al. (2021) are less consistent with the hypotheses that emphasize the quality-related information encoded in different signal modalities and a hypothesis that focuses on signal transmission across heterogeneous environments. These results showcase how experimental manipulation of different signal modalities and tests of multiple alternative hypotheses are key to clarifying the function of multimodal displays.

Keywords

References

  1. Bro-Jørgensen, J. (2010). Dynamics of multiple signalling systems: Animal communication in a world in flux. Trends in Ecology & Evolution, 25(5), 292-300.
  2. Caldart, V. M., Dos Santos, M. B., & Machado, G. (2021). Function of a multimodal signal: A multiple hypothesis test using a robot frog. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13620
  3. Caldart, V. M., Iop, S., & Cechin, S. Z. (2011). Vocalizations of Crossodactylus schmidti Gallardo, 1961 (Anura, Hylodidae): Advertisement call and aggressive call. North-Western Journal of Zoology, 7(1), 118-124.
  4. Caldart, V. M., Iop, S., & Cechin, S. Z. (2014). Social interactions in a neotropical stream frog reveal a complex repertoire of visual signals and the use of multimodal communication. Behaviour, 151(6), 719-739.
  5. Candolin, U. (2003). The use of multiple cues in mate choice. Biological Reviews, 78(4), 575-595.
  6. Gingras, B., Boeckle, M., Herbst, C. T., & Fitch, W. T. (2013). Call acoustics reflect body size across four clades of anurans. Journal of Zoology, 289(2), 143-150.
  7. Grafe, T. U., Preininger, D., Sztatecsny, M., Kasah, R., Dehling, J. M., Proksch, S., & Hödl, W. (2012). Multimodal communication in a noisy environment: A case study of the Bornean rock frog Staurois parvus. PLoS ONE, 7(5), e37965.
  8. Grafe, T. U., & Wanger, T. C. (2007). Multimodal signaling in male and female foot-flagging frogs Staurois guttatus (Ranidae): An alerting function of calling. Ethology, 113(8), 772-781.
  9. Hartmann, M. T., Giasson, L. O. M., Hartmann, P. A., & Haddad, C. F. B. (2005). Visual communication in Brazilian species of anurans from the Atlantic forest. Journal of Natural History, 39(19), 1675-1685.
  10. Hebets, E. A., & Papaj, D. R. (2005). Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57(3), 197-214.
  11. Hughes, M. (1996). The function of concurrent signals: Visual and chemical communication in snapping shrimp. Animal Behaviour, 52(2), 247-257.
  12. Krishna, S., & Krishna, S. (2006). Visual and acoustic communication in an endemic stream frog, Micrixalus saxicolus in the Western Ghats, India. Amphibia-Reptilia, 27(1), 143-147.
  13. Lindquist, E. D., & Hetherington, T. E. (1996). Field studies on visual and acoustic signaling in the ‘earless’ Panamanian golden frog, Atelopus zeteki. Journal of Herpetology, 30, 347-354.
  14. Mitoyen, C., Quigley, C., & Fusani, L. (2019). Evolution and function of multimodal courtship displays. Ethology, 125(8), 503-515.
  15. Narins, P. M., Hödl, W., & Grabul, D. S. (2003). Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 577-580.
  16. Partan, S., & Marler, P. (1999). Communication goes multimodal. Science, 283(5406), 1272-1273.
  17. Rowe, C. (1999). Receiver psychology and the evolution of multicomponent signals. Animal Behaviour, 58(5), 921-931.
  18. Rowe, C., & Halpin, C. (2013). Why are warning displays multimodal? Behavioral Ecology and Sociobiology, 67(9), 1425-1439.
  19. Starnberger, I., Preininger, D., & Hödl, W. (2014). From uni-to multimodality: Towards an integrative view on anuran communication. Journal of Comparative Physiology A, 200(9), 777-787.
  20. Taylor, R. C., Klein, B. A., & Ryan, M. J. (2011). Inter-signal interaction and uncertain information in anuran multimodal signals. Current Zoology, 57(2), 153-161.
  21. Taylor, R. C., Klein, B. A., Stein, J., & Ryan, M. J. (2008). Faux frogs: Multimodal signalling and the value of robotics in animal behaviour. Animal Behaviour, 76(3), 1089-1097.
  22. Taylor, R. C., Klein, B. A., Stein, J., & Ryan, M. J. (2011). Multimodal signal variation in space and time: How important is matching a signal with its signaler? Journal of Experimental Biology, 214(5), 815-820.
  23. Vicente, N. S., & Halloy, M. (2017). Interaction between visual and chemical cues in a Liolaemus lizard: A multimodal approach. Zoology, 125, 24-28.
  24. Wells, K. D. (2010). The ecology and behavior of amphibians. University of Chicago Press.

Grants

  1. 2019-06444/Vetenskapsrådet

MeSH Term

Animals
Anura
Biological Evolution
Robotic Surgical Procedures
Robotics

Word Cloud

Created with Highcharts 10.0.0multimodalsignalsfrogdifferentmodalitiesdisplaysfunctionCaldart2021multiplehypothesesresultssignalMhypothesistestusingsensorydisplayinformationquestionsetalroboticalternativeinter-signalinteractionvisualacousticINFOCUS:VBdosSantos&GMachadoFunctionsignal:robotJournalAnimalEcologyhttps://doiorg/101111/1365-265613620AnimalscancommunicateperceivedsystemsmanycombinerepertoiresevolvetransmitindividualscrucialbehaviouralevolutionaryresearchempiricalstudiesaddressingassumeevenimplicitlyindependenteffectsreceiverresponsesNonethelesspotentialinteractionsexplanationrecognizedtwodecadesusereceiver-basedapproachfouracoustic + visualstream-dwellingCrossodactylusschmidtilendsupportmechanismwherebyinclusionmodifiescontextinterpretedcontrastlessconsistentemphasizequality-relatedencodedfocusestransmissionacrossheterogeneousenvironmentsshowcaseexperimentalmanipulationtestskeyclarifyinginteractdisplays:Insightsagonisticcommunication

Similar Articles

Cited By