Mapping human haematopoietic stem cells from haemogenic endothelium to birth.

Vincenzo Calvanese, Sandra Capellera-Garcia, Feiyang Ma, Iman Fares, Simone Liebscher, Elizabeth S Ng, Sophia Ekstrand, Júlia Aguadé-Gorgorió, Anastasia Vavilina, Diane Lefaudeux, Brian Nadel, Jacky Y Li, Yanling Wang, Lydia K Lee, Reza Ardehali, M Luisa Iruela-Arispe, Matteo Pellegrini, Ed G Stanley, Andrew G Elefanty, Katja Schenke-Layland, Hanna K A Mikkola
Author Information
  1. Vincenzo Calvanese: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. v.calvanese@ucl.ac.uk. ORCID
  2. Sandra Capellera-Garcia: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  3. Feiyang Ma: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. ORCID
  4. Iman Fares: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  5. Simone Liebscher: Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany.
  6. Elizabeth S Ng: Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
  7. Sophia Ekstrand: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  8. Júlia Aguadé-Gorgorió: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. ORCID
  9. Anastasia Vavilina: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  10. Diane Lefaudeux: Signaling Systems Laboratory, Department of Microbiology Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA.
  11. Brian Nadel: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. ORCID
  12. Jacky Y Li: Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
  13. Yanling Wang: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  14. Lydia K Lee: Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA.
  15. Reza Ardehali: Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. ORCID
  16. M Luisa Iruela-Arispe: Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. ORCID
  17. Matteo Pellegrini: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
  18. Ed G Stanley: Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
  19. Andrew G Elefanty: Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia. ORCID
  20. Katja Schenke-Layland: Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany. ORCID
  21. Hanna K A Mikkola: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. hmikkola@mcdb.ucla.edu. ORCID

Abstract

The ontogeny of human haematopoietic stem cells (HSCs) is poorly defined owing to the inability to identify HSCs as they emerge and mature at different haematopoietic sites. Here we created a single-cell transcriptome map of human haematopoietic tissues from the first trimester to birth and found that the HSC signature RUNX1HOXA9MLLT3MECOMHLFSPINK2 distinguishes HSCs from progenitors throughout gestation. In addition to the aorta-gonad-mesonephros region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. A comparison of HSCs at different maturation stages revealed the establishment of HSC transcription factor machinery after the emergence of HSCs, whereas their surface phenotype evolved throughout development. The HSC transition to the liver marked a molecular shift evidenced by suppression of surface antigens reflecting nascent HSC identity, and acquisition of the HSC maturity markers CD133 (encoded by PROM1) and HLA-DR. HSC origin was tracked to ALDH1A1KCNK17 haemogenic endothelial cells, which arose from an IL33ALDH1A1 arterial endothelial subset termed pre-haemogenic endothelial cells. Using spatial transcriptomics and immunofluorescence, we visualized this process in ventrally located intra-aortic haematopoietic clusters. The in vivo map of human HSC ontogeny validated the generation of aorta-gonad-mesonephros-like definitive haematopoietic stem and progenitor cells from human pluripotent stem cells, and serves as a guide to improve their maturation to functional HSCs.

References

  1. Tavian, M., Hallais, M. F. & Peault, B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126, 793–803 (1999). [DOI: 10.1242/dev.126.4.793]
  2. Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417–2427 (2011). [DOI: 10.1084/jem.20111688]
  3. Boisset, J. C. et al. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood 125, 465–469 (2015). [DOI: 10.1182/blood-2014-07-588954]
  4. Ivanovs, A. et al. Human haematopoietic stem cell development: from the embryo to the dish. Development 144, 2323–2337 (2017). [DOI: 10.1242/dev.134866]
  5. Hadland, B. K. et al. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros–derived hematopoietic stem cells. J. Clin. Invest. 125, 2032–2045 (2015). [DOI: 10.1172/JCI80137]
  6. Ivanovs, A., Rybtsov, S., Anderson, R. A. & Medvinsky, A. Vast self-renewal potential of human AGM region HSCs dramatically declines in the umbilical cord blood. Stem Cell Rep. 15, 811–816 (2020). [DOI: 10.1016/j.stemcr.2020.08.008]
  7. Ghosn, E., Yoshimoto, M., Nakauchi, H., Weissman, I. L. & Herzenberg, L. A. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 146, dev170571 (2019). [DOI: 10.1242/dev.170571]
  8. Palis, J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590, 3965–3974 (2016). [DOI: 10.1002/1873-3468.12459]
  9. Soares-da-Silva, F. et al. Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life. J. Exp. Med. 218, e20201729 (2021). [DOI: 10.1084/jem.20201729]
  10. Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020). [DOI: 10.1038/s41586-020-2316-7]
  11. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). [DOI: 10.1126/science.1194637]
  12. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015). [PMID: 25470051]
  13. Zeng, Y. et al. Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity 51, 930–948 (2019). [DOI: 10.1016/j.immuni.2019.09.008]
  14. Zhou, F. et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487–492 (2016). [DOI: 10.1038/nature17997]
  15. Beaudin, A. E. et al. A transient developmental hematopoietic stem cell gives rise to innate-like B and T cells. Cell Stem Cell 19, 768–783 (2016). [DOI: 10.1016/j.stem.2016.08.013]
  16. Zeng, Y. et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881–894 (2019). [DOI: 10.1038/s41422-019-0228-6]
  17. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019). [DOI: 10.1038/s41586-019-1652-y]
  18. de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000). [DOI: 10.1093/emboj/19.11.2465]
  19. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005). [DOI: 10.1016/j.devcel.2004.12.016]
  20. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005). [DOI: 10.1016/j.devcel.2005.02.001]
  21. Rhodes, K. E. et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2, 252–263 (2008). [DOI: 10.1016/j.stem.2008.01.001]
  22. Li, Z. et al. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11, 663–675 (2012). [DOI: 10.1016/j.stem.2012.07.004]
  23. Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013). [DOI: 10.1038/ncomms2569]
  24. Bárcena, A., Muench, M. O., Kapidzic, M. & Fisher, S. J. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod. Sci. 16, 178–187 (2009). [DOI: 10.1177/1933719108327621]
  25. Robin, C. et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5, 385–395 (2009). [DOI: 10.1016/j.stem.2009.08.020]
  26. Van Handel, B. et al. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood 116, 3321–3330 (2010). [DOI: 10.1182/blood-2010-04-279489]
  27. Heck, A. M., Ishida, T. & Hadland, B. Location, location, location: how vascular specialization influences hematopoietic fates during development. Front. Cell Dev. Biol. 8, 602617 (2020). [DOI: 10.3389/fcell.2020.602617]
  28. Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008). [DOI: 10.1016/j.stem.2008.09.018]
  29. Zhu, Q. et al. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 136, 845–856 (2020). [DOI: 10.1182/blood.2020004801]
  30. Crosse, E. I. et al. Multi-layered spatial transcriptomics identify secretory factors promoting human hematopoietic stem cell development. Cell Stem Cell 27, 822–839 (2020). [DOI: 10.1016/j.stem.2020.08.004]
  31. Ditadi, A. et al. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat. Cell Biol. 17, 580–591 (2015). [DOI: 10.1038/ncb3161]
  32. Dou, D. R. et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat. Cell Biol. 18, 595–606 (2016). [DOI: 10.1038/ncb3354]
  33. Ng, E. S. et al. Differentiation of human embryonic stem cells to HOXA hemogenic vasculature that resembles the aorta–gonad–mesonephros. Nat. Biotechnol. 34, 1168–1179 (2016). [DOI: 10.1038/nbt.3702]
  34. Calvanese, V. et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576, 281–286 (2019). [DOI: 10.1038/s41586-019-1790-2]
  35. Kataoka, K. et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J. Exp. Med. 208, 2403–2416 (2011). [DOI: 10.1084/jem.20110447]
  36. Komorowska, K. et al. Hepatic leukemia factor maintains quiescence of hematopoietic stem cells and protects the stem cell pool during regeneration. Cell Rep. 21, 3514–3523 (2017). [DOI: 10.1016/j.celrep.2017.11.084]
  37. Jokubaitis, V. J. et al. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111, 4055–4063 (2008). [DOI: 10.1182/blood-2007-05-091710]
  38. Pellin, D. et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat. Commun. 10, 2395 (2019). [DOI: 10.1038/s41467-019-10291-0]
  39. Lehnertz, B. et al. HLF expression defines the human hematopoietic stem cell state. Blood 138, 2642–2654 (2021). [DOI: 10.1182/blood.2021010745]
  40. Lee, B. et al. Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testes. J. Biol. Chem. 286, 29108–29117 (2011). [DOI: 10.1074/jbc.M111.244905]
  41. McKinney-Freeman, S. et al. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11, 701–714 (2012). [DOI: 10.1016/j.stem.2012.07.018]
  42. Robin, C. et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell 11, 171–180 (2006). [DOI: 10.1016/j.devcel.2006.07.002]
  43. Copley, M. R. et al. The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat. Cell Biol. 15, 916–925 (2013). [DOI: 10.1038/ncb2783]
  44. Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O., Godin, I. & Cumano, A. Immature hematopoietic stem cells undergo maturation in the fetal liver. Development 139, 3521–3530 (2012). [DOI: 10.1242/dev.079210]
  45. Prashad, S. L. et al. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16, 80–87 (2014). [DOI: 10.1016/j.stem.2014.10.020]
  46. Vanuytsel, K. et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat. Commun. 13, 1103 (2022).
  47. Chanda, B., Ditadi, A., Iscove, N. N. & Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215–227 (2013). [DOI: 10.1016/j.cell.2013.08.055]
  48. Ali, S. et al. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J. Immunol. 187, 1609–1616 (2011). [DOI: 10.4049/jimmunol.1003080]
  49. Motazedian, A. et al. Multipotent RAG1 progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat. Cell Biol. 22, 60–73 (2020). [DOI: 10.1038/s41556-019-0445-8]
  50. Uenishi, G. I. et al. NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nat. Commun. 9, 1828–1828 (2018). [DOI: 10.1038/s41467-018-04134-7]
  51. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018). [DOI: 10.1016/j.cell.2018.05.061]
  52. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). [DOI: 10.1093/nar/gkw377]
  53. Kao, T. et al. GAPTrap: a simple expression system for pluripotent stem cells and their derivatives. Stem Cell Rep. 7, 518–526 (2016). [DOI: 10.1016/j.stemcr.2016.07.015]
  54. Nafria, M., Bonifer, C., Stanley, E. G., Ng, E. S. & Elefanty, A. G. Protocol for the generation of definitive hematopoietic progenitors from human pluripotent stem cells. STAR Protoc. 1, 100130 (2020). [DOI: 10.1016/j.xpro.2020.100130]
  55. Ma, F. & Pellegrini, M. ACTINN: automated identification of cell types in single cell RNA sequencing. Bioinformatics 36, 533–538 (2020). [PMID: 31359028]

Grants

  1. R01 HL148714/NHLBI NIH HHS
  2. R35 HL140014/NHLBI NIH HHS
  3. T32 HL086345/NHLBI NIH HHS
  4. R01 DK100959/NIDDK NIH HHS
  5. T32 HL069766/NHLBI NIH HHS
  6. R01 DK125097/NIDDK NIH HHS
  7. R01 DK121557/NIDDK NIH HHS
  8. P30 CA016042/NCI NIH HHS
  9. P30 AI028697/NIAID NIH HHS

MeSH Term

Cell Differentiation
Endothelial Cells
Endothelium
Female
Hematopoiesis
Hematopoietic Stem Cells
Humans
Mesonephros
Pregnancy