Visible Light and the Skin.

Nneamaka Ezekwe, Jalal Maghfour, Indermeet Kohli
Author Information
  1. Nneamaka Ezekwe: Department of Dermatology, University of Colorado, Aurora, CO, USA.
  2. Jalal Maghfour: Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA. ORCID
  3. Indermeet Kohli: Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA. ORCID

Abstract

Visible light (VL, 400-700 nm) was previously regarded as nonsignificant with minimal to no photobiologic effects on the skin. Recent studies have demonstrated that in dark-skinned individuals (skin phototypes IV-VI), VL can induce more intense and longer lasting pigmentation compared to ultraviolet A1 (UVA1, 340-400 nm). Additionally, long wavelength UVA1 (370-400 nm) has been shown to potentiate these effects of VL. The combination of VL and UVA1 (VL + UVA1, 370-700 nm) was also able to induce erythema in light-skinned individuals (skin phototypes I-III), which is a novel finding since the erythemogenic spectrum of sunlight has primarily been attributed to ultraviolet B (UVB, 290-320 nm) and short wavelength UVA2 (320-340 nm) only. Although biologic effects of VL + UVA1 have been established, there are no guidelines in any country to test for photoprotection against this waveband. This invited perspective aims to present the evolution of knowledge of photobiologic effects of VL, associated phototesting methodologies, and current position on VL photoprotection.

References

  1. Austin, E., A. N. Geisler, J. Nguyen, I. Kohli, I. Hamzavi, H. W. Lim and J. Jagdeo (2021) Visible light. Part I: Properties and cutaneous effects of visible light. J. Am. Acad. Dermatol. 84, 1219-1231.
  2. Liebel, F., S. Kaur, E. Ruvolo, N. Kollias and M. D. Southall (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J. Invest. Dermatol. 132, 1901-1907.
  3. Narla, S., I. Kohli, I. H. Hamzavi and H. W. Lim (2020) Visible light in photodermatology. Photochem. Photobiol. Sci. 19, 99-104.
  4. Kohli, I., S. Chaowattanapanit, T. F. Mohammad, C. L. Nicholson, S. Fatima, G. Jacobsen, et al. (2018) Synergistic effects of long-wavelength ultraviolet A1 and visible light on pigmentation and erythema. Br. J. Dermatol. 178, 1173-1180.
  5. Kollias, N. and A. Baqer (1984) An experimental study of the changes in pigmentation in human skin in vivo with visible and near infrared light. Photochem. Photobiol. 39, 651-659.
  6. Mahmoud, B. H., E. Ruvolo, C. L. Hexsel, Y. Liu, M. R. Owen, N. Kollias, et al. (2010) Impact of long-wavelength UVA and visible light on melanocompetent skin. J. Invest. Dermatol. 130, 2092-2097.
  7. Duteil, L., N. Cardot-Leccia, C. Queille-Roussel, Y. Maubert, Y. Harmelin, F. Boukari, et al. (2014) Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res. 27, 822-826.
  8. Kohli, I., R. Zubair, A. B. Lyons, A. F. Nahhas, T. L. Braunberger, M. Mokhtari, et al. (2019) Impact of long-wavelength ultraviolet A1 and visible light on light-skinned individuals. Photochem. Photobiol. 95, 1285-1287.
  9. Mahmoud, B. H., C. L. Hexsel, I. H. Hamzavi and H. W. Lim (2008) Effects of visible light on the skin. Photochem. Photobiol. 84, 450-462.
  10. Sklar, L. R., F. Almutawa, H. W. Lim and I. Hamzavi (2013) Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochem. Photobiol. Sci. 12, 54-64.
  11. Routaboul, C., A. Denis and A. Vinche (1999) Immediate pigment darkening: Description, kinetic and biological function. Eur. J. Dermatol. 9, 95-99.
  12. Kollias, N. and A. H. Baqer (1987) Absorption mechanisms of human melanin in the visible, 400-720 nm. J. Invest. Dermatol. 89, 384-388.
  13. Rosen, C. F., S. L. Jacques, M. E. Stuart and R. W. Gange (1990) Immediate pigment darkening: Visual and reflectance spectrophotometric analysis of action spectrum. Photochem. Photobiol. 51, 583-588.
  14. Lim, H. W., I. Kohli, C. Granger, C. Trullàs, J. Piquero-Casals, M. Narda, et al. (2021) Photoprotection of the skin from visible light-induced pigmentation: Current testing methods and proposed harmonization. J. Investig. Dermatol. 141, 2569-2576.
  15. Delamour, E., S. Miksa and D. Lutz (2017) Are you ready to protect yourself from blue light? New in vitro method allowing the blue light protection assessment of sunscreens. Euro Cosmetics.
  16. Kaye, E. T., J. A. Levin, I. H. Blank, K. A. Arndt and R. R. Anderson (1991) Efficiency of opaque photoprotective agents in the visible light range. Arch. Dermatol. 127, 351-355.
  17. Miksa, S. and D. Lutz (2018) Sunscreen products claimable with Full Spectrum Protection-Full Light Protection. Euro Cosmetics.
  18. Ruvolo, E., M. Fair, A. Hutson and F. Liebel (2018) Photoprotection against visible light-induced pigmentation. Int. J. Cosmet. Sci. 40, 589-595.
  19. Schalka, S., F. Addor, C. Agelune and V. Pereira (2012) Sunscreen protection against visible light: A new proposal for evaluation. Surg. Cosmet Dermatol. 3, e52.
  20. Schalka, S., M. de Paula Corrêa, L. Y. Sawada, C. C. Canale and T. N. de Andrade (2019) A novel method for evaluating sun visible light protection factor and pigmentation protection factor of sunscreens. Clin. Cosmetic Investigat. Dermatol. 12, 605-616.
  21. Porges, S. B., K. H. Kaidbey and G. L. Grove (1988) Quantification of visible light-induced melanogenesis in human skin. Photo-Dermatology 5, 197-200.
  22. Regazzetti, C., L. Sormani, D. Debayle, F. Bernerd, M. K. Tulic, G. M. De Donatis, et al. (2018) Melanocytes sense blue light and regulate pigmentation through Opsin-3. J. Investigat. Dermatol. 138, 171-178.
  23. Dumbuya, H., P. E. Grimes, S. Lynch, K. Ji, M. Brahmachary, Q. Zheng, et al. (2020) Impact of iron-oxide containing formulations against visible light-induced skin pigmentation in skin of color individuals. J. Drugs Dermatol. 19, 712-717.
  24. Lyons, A. B., R. Zubair, I. Kohli, A. F. Nahhas, T. L. Braunberger, M. Mokhtari, et al. (2022) Mitigating visible light and long wavelength UVA1-induced effects with topical antioxidants. Photochem. Photobiol. 98, 455-460.
  25. Mann, T., K. Eggers, F. Rippke, M. Tesch, A. Buerger, M. E. Darvin, et al. (2020) High-energy visible light at ambient doses and intensities induces oxidative stress of skin-protective effects of the antioxidant and Nrf2 inducer Licochalcone a in vitro and in vivo. Photodermatol. Photoimmunol. Photomed. 36, 135-144.
  26. Mohammad, T. F., I. Kohli, C. L. Nicholson, G. Treyger, S. Chaowattanapanit, A. F. Nahhas, et al. (2019) Oral polypodium Leucotomos extract and its impact on visible light-induced pigmentation in human subjects. J. Drugs Dermatol. 18, 1198-1203.
  27. Nnmeaka, E. (2021) Efficacy evaluation of topical sunscreens against long wavelength ultraviolet a1 and visible light induced biological effects: Preliminary findings. Ann Meet Photodermatol Virtual.
  28. Kohli, I., T. L. Braunberger, A. F. Nahhas, F. N. Mirza, M. Mokhtari, A. B. Lyons, et al. (2020) Long-wavelength ultraviolet A1 and visible light photoprotection: A multimodality assessment of dose and response. Photochem. Photobiol. 96, 208-214.
  29. Kohli, I., A. F. Nahhas, T. L. Braunberger, S. Chaowattanapanit, T. F. Mohammad, C. L. Nicholson, et al. (2019) Spectral characteristics of visible light-induced pigmentation and visible light protection factor. Photodermatol. Photoimmunol. Photomed. 35, 393-399.
  30. Duteil, L., J. Esdaile, Y. Maubert, A. C. Cathelineau, A. Bouloc, C. Queille-Roussel, et al. (2017) A method to assess the protective efficacy of sunscreens against visible light-induced pigmentation. Photodermatol. Photoimmunol. Photomed. 33, 260-266.
  31. Jo, H. L., Y. Jung, B.-F. Suh, E. Cho, K. Kim and E. Kim (2020) Clinical evaluation method for blue light (456 nm) protection of skin. J. Cosmet. Dermatol. 19, 2438-2443.

MeSH Term

Humans
Skin Pigmentation
Ultraviolet Rays
Light
Skin
Erythema

Word Cloud

Created with Highcharts 10.0.0VLeffectsskinUVA1VisiblephotobiologicindividualsphototypesinduceultravioletwavelengthVL + UVA1photoprotectionlight400-700 nmpreviouslyregardednonsignificantminimalRecentstudiesdemonstrateddark-skinnedIV-VIcanintenselongerlastingpigmentationcomparedA1340-400 nmAdditionallylong370-400 nmshownpotentiatecombination370-700 nmalsoableerythemalight-skinnedI-IIInovelfindingsinceerythemogenicspectrumsunlightprimarilyattributedBUVB290-320 nmshortUVA2320-340 nmAlthoughbiologicestablishedguidelinescountrytestwavebandinvitedperspectiveaimspresentevolutionknowledgeassociatedphototestingmethodologiescurrentpositionLightSkin

Similar Articles

Cited By