A spatiotemporal analysis of NO concentrations during the Italian 2020 COVID-19 lockdown.

Guido Fioravanti, Michela Cameletti, Sara Martino, Giorgio Cattani, Enrico Pisoni
Author Information
  1. Guido Fioravanti: Istituto Superiore per la Protezione e la Ricerca Ambientale Rome Italy.
  2. Michela Cameletti: Department of Economics University of Bergamo Bergamo Italy.
  3. Sara Martino: Norwegian University of Science and Technology Trondheim Norway. ORCID
  4. Giorgio Cattani: Istituto Superiore per la Protezione e la Ricerca Ambientale Rome Italy. ORCID
  5. Enrico Pisoni: European Commission Joint Research Centre Ispra Italy.

Abstract

When a new environmental policy or a specific intervention is taken in order to improve air quality, it is paramount to assess and quantify-in space and time-the effectiveness of the adopted strategy. The lockdown measures taken worldwide in 2020 to reduce the spread of the SARS-CoV-2 virus can be envisioned as a policy intervention with an indirect effect on air quality. In this paper we propose a statistical spatiotemporal model as a tool for intervention analysis, able to take into account the effect of weather and other confounding factor, as well as the spatial and temporal correlation existing in the data. In particular, we focus here on the 2019/2020 relative change in nitrogen dioxide (NO ) concentrations in the north of Italy, for the period of March and April during which the lockdown measure was in force. We found that during March and April 2020 most of the studied area is characterized by negative relative changes (median values around 25%), with the exception of the first week of March and the fourth week of April (median values around 5%). As these changes cannot be attributed to a weather effect, it is likely that they are a byproduct of the lockdown measures. There are two aspects of our research that are equally interesting. First, we provide a unique statistical perspective for calculating the relative change in the NO by jointly modeling pollutant concentrations time series. Second, as an output we provide a collection of weekly continuous maps, describing the spatial pattern of the NO 2019/2020 relative changes.

Keywords

References

  1. Environ Pollut. 2016 Nov;218:463-474 [PMID: 27450415]
  2. Nat Commun. 2020 Oct 28;11(1):5444 [PMID: 33116149]
  3. Spat Stat. 2022 Jun;49:100549 [PMID: 34733604]
  4. Environmetrics. 2021 Mar;32(2):e2673 [PMID: 33786004]
  5. Environ Int. 2020 Feb;135:105400 [PMID: 31855800]
  6. Sci Rep. 2021 Dec 7;11(1):23517 [PMID: 34876601]
  7. Sci Total Environ. 2019 Feb 25;653:578-588 [PMID: 30759588]
  8. Urban Clim. 2020 Dec;34:100719 [PMID: 33083215]
  9. Environmetrics. 2022 Jun;33(4):e2723 [PMID: 35574514]
  10. J R Stat Soc Ser C Appl Stat. 2013 Mar;62(2):287-308 [PMID: 23518479]
  11. Sci Total Environ. 2020 Dec 10;747:141322 [PMID: 32781318]
  12. Lancet. 2020 Apr 11;395(10231):1225-1228 [PMID: 32178769]
  13. Sci Total Environ. 2020 Nov 1;741:140426 [PMID: 32593893]
  14. Int J Environ Res Public Health. 2020 Feb 08;17(3): [PMID: 32046370]
  15. Joule. 2020 Nov 18;4(11):2322-2337 [PMID: 33015556]
  16. Environ Sci Pollut Res Int. 2021 May;28(18):22981-23004 [PMID: 33433830]
  17. Sci Rep. 2021 Oct 13;11(1):20339 [PMID: 34645879]
  18. Cities. 2021 Oct;117:103308 [PMID: 34127873]
  19. J Air Waste Manage Assoc. 1990 Oct;40(10):1378-83 [PMID: 2257125]
  20. Atmos Environ (1994). 2021 Jan 1;244:117972 [PMID: 33013178]
  21. Lett Spat Resour Sci. 2021;14(2):101-110 [PMID: 33758625]
  22. Environ Sustain (Singap). 2021;4(3):469-487 [PMID: 38624663]
  23. Air Qual Atmos Health. 2021;14(4):591-604 [PMID: 33193909]
  24. Sci Total Environ. 2020 Aug 1;728:138820 [PMID: 32334164]
  25. Geophys Res Lett. 2020 Jun 16;47(11):e2020GL087978 [PMID: 32836515]
  26. Biostatistics. 2017 Apr 1;18(2):370-385 [PMID: 28025181]
  27. J Clean Prod. 2021 Apr 1;291:125806 [PMID: 36569464]
  28. Atmos Pollut Res. 2021 Feb;12(2):84-92 [PMID: 33162774]
  29. Atmos Environ (1994). 2020 Oct 15;239:117794 [PMID: 32834728]
  30. Sci Total Environ. 2020 Aug 20;731:139052 [PMID: 32413655]

Word Cloud

Created with Highcharts 10.0.0lockdownrelativeNOinterventionpolicy2020effectstatisticalspatiotemporalchangeconcentrationsMarchAprilchangestakenairqualitymeasuresmodelanalysisweatherspatial2019/2020medianvaluesaroundweekprovidenewenvironmentalspecificorderimproveparamountassessquantify-inspacetime-theeffectivenessadoptedstrategyworldwidereducespreadSARS-CoV-2viruscanenvisionedindirectpaperproposetoolabletakeaccountconfoundingfactorwelltemporalcorrelationexistingdataparticularfocusnitrogendioxidenorthItalyperiodmeasureforcefoundstudiedareacharacterizednegative25%exceptionfirstfourth5%attributedlikelybyproducttwoaspectsresearchequallyinterestingFirstuniqueperspectivecalculatingjointlymodelingpollutanttimeseriesSecondoutputcollectionweeklycontinuousmapsdescribingpatternItalianCOVID-19COVID���19INLA���SPDEapproachanalysis/environmental

Similar Articles

Cited By (1)