Cuprizone-mediated demyelination reversibly degrades voiding behavior in mice while sparing brainstem reflex.

Ramalakshmi Ramasamy, Cara C Hardy, Stephen J Crocker, Phillip P Smith
Author Information
  1. Ramalakshmi Ramasamy: Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
  2. Cara C Hardy: Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
  3. Stephen J Crocker: Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA. ORCID
  4. Phillip P Smith: Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.

Abstract

Multiple sclerosis (MS) is a chronic, progressively debilitating demyelinating disease of the central nervous system (CNS). Nearly 80% of MS patients experience lower urinary tract dysfunction early in their diagnosis. This significantly affects the quality of life, and in latter stages of disease is a leading cause of hospitalization. Previously, animal models have shown that inflammatory Demyelination in the CNS causes profound bladder dysfunction, but the confounding influence of systemic inflammation limits the potential interpretation of the contribution of CNS Demyelination to bladder dysfunction. Since the micturition circuit has myelinated neuronal connections in the cortex, brainstem, and spinal cord, we examined alterations in bladder function in the Cuprizone model characterized by demyelinating lesions in the cortex and corpus callosum that are independent of T-cell-mediated autoimmunity. Herein, we report that a 4-week dietary Cuprizone treatment in C57Bl/6J mice induced alterations in voiding behavior with increased micturition frequency and reduced volume voided, similar to human MS bladder dysfunction. Subsequently, recovery from Cuprizone treatment restored normal bladder function. Demyelination and remyelination were confirmed by Luxol Fast Blue staining of the corpus callosum. Additionally, we also determined that an 8-week Cuprizone treatment, resulting in chronic Demyelination lacking spontaneous remyelination potential, is associated with an exacerbated voiding phenotype. Interestingly, while Cuprizone-induced CNS Demyelination severely affected conscious (cortical) urinary behavior, the brainstem and spinal cord reflex remained unchanged, as confirmed by urethane-anesthetized cystometry. This is the first study to show that cortical Demyelination independent of inflammation can negatively impact urinary function.

Keywords

References

  1. Acs, P., & Kalman, B. (2012). Pathogenesis of multiple sclerosis: What can we learn from the cuprizone model. Methods in Molecular Biology (Clifton, N.J.), 900, 403-431. https://doi.org/10.1007/978-1-60761-720-4_20
  2. Aharony, S. M., Lam, O., & Corcos, J. (2017). Evaluation of lower urinary tract symptoms in multiple sclerosis patients: Review of the literature and current guidelines. Canadian Urological Association journal = Journal de l'Association des urologues du Canada, 11(1-2), 61-64. https://doi.org/10.5489/cuaj.4058
  3. Al-naggar, I. M., Hardy, C. C., Taweh, O. G., Grabauskas, T., Mulkey, D. K., Kuchel, G. A., & Phillip, P. (2019). Brief report HCN as a mediator of urinary homeostasis: Age-associated changes in expression and function in adrenergic detrusor relaxation. The Journals of Gerontology: Series A, 74(3), 325-329. https://doi.org/10.1093/gerona/gly137
  4. Altuntas, C. Z., Daneshgari, F., Izgi, K., Bicer, F., Ozer, A., Sakalar, C., Grimberg, K. O., Sayin, I., & Tuohy, V. K. (2012). Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder. American Journal of Physiology - Renal Physiology, 303(9), F1363-F1369. https://doi.org/10.1152/ajprenal.00273.2012
  5. Altuntas, C. Z., Daneshgari, F., Liu, G., Fabiyi, A., Kavran, M., Johnson, J. M., Gulen, M. F., Jaini, R., Li, X., Frenkl, T. L., & Tuohy, V. K. (2008). Bladder dysfunction in mice with experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 203(1), 58-63. https://doi.org/10.1016/j.jneuroim.2008.06.038
  6. Andersson, K. E. (2004). Antimuscarinics for treatment of overactive bladder. The Lancet Neurology, 3(1), 46-53. https://doi.org/10.1016/S1474-4422(03)00622-7
  7. Araki, I., Matsui, M., Ozawa, K., Takeda, M., & Kuno, S. (2003). Relationship of bladder dysfunction to lesion site in multiple sclerosis. The Journal of Urology, 169(4), 1384-1387. https://doi.org/10.1097/01.ju.0000049644.27713.c8
  8. Betts, C. D., D'Mellow, M. T., & Fowler, C. J. (1993). Urinary symptoms and the neurological features of bladder dysfunction in multiple sclerosis. Journal of Neurology Neurosurgery and Psychiatry, 56(3), 245-250. https://doi.org/10.1136/jnnp.56.3.245
  9. Bjorling, D. E., Wang, Z., Vezina, C. M., Ricke, W. A., Keil, K. P., Yu, W., Guo, L., Zeidel, M. L., & Hill, W. G. (2015). Evaluation of voiding assays in mice: Impact of genetic strains and sex. American Journal of Physiology - Renal Physiology, 308(12), F1369-F1378. https://doi.org/10.1152/ajprenal.00072.2015
  10. Blaivas, J. G., & Barbalias, G. A. (1984). Detrusor-external sphincter dyssynergia in men with multiple sclerosis: an ominous urologic condition. The Journal of Urology, 131(1), 91-94. https://doi.org/10.1016/S0022-5347(17)50216-5
  11. Blakemore, W. F. (1972). Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. Journal of Neurocytology, 1(4), 413-426. https://doi.org/10.1007/BF01102943
  12. Borello-France, D., Leng, W., O'Leary, M., Xavier, M., Erickson, J., Chancellor, M. B., & Cannon, T. W. (2004). Bladder and sexual function among women with multiple sclerosis. Multiple Sclerosis, 10(4), 455-461. https://doi.org/10.1191/1352458504ms1060oa
  13. Bruce, C. C., Zhao, C., & Franklin, R. J. M. (2010). Remyelination-An effective means of neuroprotection. Hormones and Behavior, 57(1), 56-62. https://doi.org/10.1016/J.YHBEH.2009.06.004
  14. Ciancio, S. J., Mutchnik, S. E., Rivera, V. M., & Boone, T. B. (2001). Urodynamic pattern changes in multiple sclerosis. Urology, 57(2), 239-245. https://doi.org/10.1016/S0090-4295(00)01070-0
  15. Cohen, R. I., & Almazan, G. (1994). Rat oligodendrocytes express muscarinic receptors coupled to phosphoinositide hydrolysis and adenylyl cyclase. The European Journal of Neuroscience, 6(7), 1213-1224. https://doi.org/10.1111/J.1460-9568.1994.TB00620.X
  16. Constantinescu, C. S., Farooqi, N., O'Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079-1106. https://doi.org/10.1111/J.1476-5381.2011.01302.X
  17. de Groat, W. C., & Yoshimura, N. (2009). Afferent nerve regulation of bladder function in health and disease. Handbook of Experimental Pharmacology, 194(194), 91-138. https://doi.org/10.1007/978-3-540-79090-7_4
  18. de Sèze, M., Ruffion, A., Denys, P., Joseph, P. A., & Perrouin-Verbe, B. (2007). The neurogenic bladder in multiple sclerosis: Review of the literature and proposal of management guidelines. In Multiple sclerosis (Vol. 13(7), pp. 915-928). SAGE Publications Ltd. https://doi.org/10.1177/1352458506075651
  19. Fowler, C. J., Griffiths, D., & de Groat, W. C. (2008). The neural control of micturition. Nature Reviews. Neuroscience, 9(6), 453-466. https://doi.org/10.1038/NRN2401
  20. Franken, J., Gevaert, T., Uvin, P., Wauterickx, K., Boeve, A. C., Rietjens, R., Boudes, M., Hendriks, J. J. A., Hellings, N., Voets, T., & de Ridder, D. (2016). Urodynamic changes in mice with experimental autoimmune encephalomyelitis correlate with neurological impairment. Neurourology and Urodynamics, 35(4), 450-456. https://doi.org/10.1002/NAU.22742
  21. Franklin, R. J. M. (2002). Why does remyelination fail in multiple sclerosis? Nature Reviews. Neuroscience, 3(9), 705-714. https://doi.org/10.1038/NRN917
  22. Frischer, J. M., Weigand, S. D., Guo, Y., Kale, N., Parisi, J. E., Pirko, I., Mandrekar, J., Bramow, S., Metz, I., Brück, W., Lassmann, H., & Lucchinetti, C. F. (2015). Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Annals of Neurology, 78(5), 710-721. https://doi.org/10.1002/ANA.24497
  23. Göçmen, C., Giesselman, B., & de Groat, W. C. (2005). Effect of neocuproine, a copper(i) chelator, on rat bladder function. The Journal of Pharmacology and Experimental Therapeutics, 312(3), 1138-1143. https://doi.org/10.1124/JPET.104.076398
  24. Green, A. J., Gelfand, J. M., Cree, B. A., Bevan, C., Boscardin, W. J., Mei, F., Inman, J., Arnow, S., Devereux, M., Abounasr, A., Nobuta, H., Zhu, A., Friessen, M., Gerona, R., von Büdingen, H. C., Henry, R. G., Hauser, S. L., & Chan, J. R. (2017). Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): A randomised, controlled, double-blind, crossover trial. Lancet (London, England), 390(10111), 2481-2489. https://doi.org/10.1016/S0140-6736(17)32346-2
  25. Haider, L., Simeonidou, C., Steinberger, G., Hametner, S., Grigoriadis, N., Deretzi, G., Kovacs, G. G., Kutzelnigg, A., Lassmann, H., & Frischer, J. M. (2014). Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. Journal of Neurology, Neurosurgery, and Psychiatry, 85(12), 1386-1395. https://doi.org/10.1136/JNNP-2014-307712
  26. Hardy, C. C., Keilich, S. R., Harrison, A. G., Knight, B. E., Baker, D. S., & Smith, P. P. (2019). The aging bladder phenotype is not the direct consequence of bladder aging. Neurourology and Urodynamics, 38(8), 2121-2129. https://doi.org/10.1002/NAU.24149
  27. Herder, V., Hansmann, F., Stangel, M., Skripuletz, T., Baumgärtner, W., & Beineke, A. (2011). Lack of cuprizone-induced demyelination in the murine spinal cord despite oligodendroglial alterations substantiates the concept of site-specific susceptibilities of the central nervous system. Neuropathology and Applied Neurobiology, 37(6), 676-684. https://doi.org/10.1111/J.1365-2990.2011.01168.X
  28. Hill, W. G., Zeidel, M. L., Bjorling, D. E., & Vezina, C. M. (2018). Void spot assay: Recommendations on the use of a simple micturition assay for mice. American Journal of Physiology - Renal Physiology, 315(5), F1422-F1429. https://doi.org/10.1152/ajprenal.00350.2018
  29. Huh, Y., & Cho, J. (2013). Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes. Frontiers in Behavioral Neuroscience, 7(Oct). https://doi.org/10.3389/FNBEH.2013.00141
  30. Keil, K. P., Abler, L. L., Altmann, H. M., Bushman, W., Marker, P. C., Li, L., Ricke, W. A., Bjorling, D. E., & Vezina, C. M. (2016). Influence of animal husbandry practices on void spot assay outcomes in C57BL/6J male mice. Neurourology and Urodynamics, 35(2), 192-198. https://doi.org/10.1002/nau.22692
  31. Khavari, R., Chen, J., Boone, T., & Karmonik, C. (2020). Brain activation patterns of female multiple sclerosis patients with voiding dysfunction. Neurourology and Urodynamics, 39(3), 969-977. https://doi.org/10.1002/NAU.24304
  32. Kipp, M., Clarner, T., Dang, J., Copray, S., & Beyer, C. (2009). The cuprizone animal model: new insights into an old story. Acta Neuropathologica, 118(6), 723-736. https://doi.org/10.1007/S00401-009-0591-3
  33. Kuerten, S., & Lehmann, P. V. (2011). The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? Journal of Interferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research, 31(12), 907-916. https://doi.org/10.1089/JIR.2011.0072
  34. Kuhlmann, T., Lassmann, H., & Brück, W. (2008). Diagnosis of inflammatory demyelination in biopsy specimens: A practical approach. In Acta neuropathologica (Vol. 115(3), pp. 275-287). Springer. https://doi.org/10.1007/s00401-007-0320-8
  35. Lavi, E., Gilden, D. H., Wroblewska, Z., Rorke, L. B., & Weiss, S. R. (1984). Experimental demyelination produced by the a59 strain of mouse hepatitis virus. Neurology, 34(5), 597-603. https://doi.org/10.1212/wnl.34.5.597
  36. Lee, M. A., Blamire, A. M., Pendlebury, S., Ho, K. H., Mills, K. R., Styles, P., Palace, J., & Matthews, P. M. (2000). Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Archives of Neurology, 57(1), 65-70. https://doi.org/10.1001/archneur.57.1.65
  37. Lee, S., Nedumaran, B., Hypolite, J., Caldwell, B., Rudolph, M. C., & Malykhina, A. P. (2019). Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis. Scientific Reports, 9(1), 10869. https://doi.org/10.1038/s41598-019-47407-x
  38. Leitner, L., Walter, M., Sammer, U., Knüpfer, S. C., Mehnert, U., & Kessler, T. M. (2016). Urodynamic investigation: A valid tool to define normal lower urinary tract function? PLoS One, 11(10), e0163847. https://doi.org/10.1371/JOURNAL.PONE.0163847
  39. Longhurst, P. A., & Uvelius, B. (2001). Pharmacological techniques for the in vitro study of the urinary bladder. Journal of Pharmacological and Toxicological Methods, 45(2), 91-108. https://doi.org/10.1016/S1056-8719(01)00133-2
  40. Love, S. (2006). Demyelinating diseases. Journal of Clinical Pathology, 59(11), 1151-1159. https://doi.org/10.1136/jcp.2005.031195
  41. Lucchinetti, C. F., Parisi, J., & Bruck, W. (2005). The pathology of multiple sclerosis. Neurologic Clinics, 23(1), 77-105. https://doi.org/10.1016/J.NCL.2004.09.002
  42. Manack, A., Motsko, S. P., Haag-Molkenteller, C., Dmochowski, R. R., Goehring, E. L., Nguyen-Kho, B. A., & Jones, J. K. (2011). Epidemiology and healthcare utilization of neurogenic bladder patients in a US claims database. Neurourology and Urodynamics, 30(3), 395-401. https://doi.org/10.1002/NAU.21003
  43. Matsushima, G. K., & Morell, P. (2001). The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathology (Zurich, Switzerland), 11(1), 107-116. https://doi.org/10.1111/J.1750-3639.2001.TB00385.X
  44. McCombe, P. A., Gordon, T. P., & Jackson, M. W. (2009). Bladder dysfunction in multiple sclerosis. Expert Review of Neurotherapeutics, 9(3), 331-340. https://doi.org/10.1586/14737175.9.3.331
  45. McMillan, M. T., Pan, X. Q., Smith, A. L., Newman, D. K., Weiss, S. R., Ruggieri, M. R., & Malykhina, A. P. (2014). Coronavirus-induced demyelination of neural pathways triggers neurogenic bladder overactivity in a mouse model of multiple sclerosis. American Journal of Physiology - Renal Physiology, 307(5), F612-F622. https://doi.org/10.1152/ajprenal.00151.2014
  46. Mei, F., Fancy, S. P. J., Shen, Y. A. A., Niu, J., Zhao, C., Presley, B., Miao, E., Lee, S., Mayoral, S. R., Redmond, S. A., Etxeberria, A., Xiao, L., Franklin, R. J. M., Green, A., Hauser, S. L., & Chan, J. R. (2014). Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 20(8), 954-960. https://doi.org/10.1038/nm.3618
  47. Miller, H., Simpson, C. A., & Yeates, W. K. (1965). Bladder dysfunction in multiple sclerosis. British Medical Journal, 1(5445), 1265-1269. https://doi.org/10.1136/bmj.1.5445.1265
  48. Mizusawa, H., Igawa, Y., Nishizawa, O., Ichikawa, M., Ito, M., & Andersson, K. (2000). A rat model for investigation of bladder dysfunction associated with demyelinating disease resembling multiple sclerosis. Neurourology and Urodynamics, 19(6), 689-699. https://doi.org/10.1002/1520-6777(2000)19:6<689::AID-NAU7>3.0.CO;2-6
  49. Nave, K. A. (2010). Myelination and the trophic support of long axons. Nature Reviews. Neuroscience, 11(4), 275-283. https://doi.org/10.1038/NRN2797
  50. Nortvedt, M. W., Riise, T., Myhr, K.-M., Landtblom, A.-M., Bakke, A., & Nyland, H. I. (2001). Reduced quality of life among multiple sclerosis patients with sexual disturbance and bladder dysfunction. Multiple Sclerosis Journal, 7(4), 231-235. https://doi.org/10.1177/135245850100700404
  51. Phé, V., Chartier-Kastler, E., & Panicker, J. N. (2016). Management of neurogenic bladder in patients with multiple sclerosis. Nature Reviews Urology, 13(5), 275-288. https://doi.org/10.1038/NRUROL.2016.53
  52. Popescu, B. F. G., & Lucchinetti, C. F. (2012). Pathology of demyelinating diseases. Annual Review of Pathology, 7, 185-217. https://doi.org/10.1146/ANNUREV-PATHOL-011811-132443
  53. Popescu, B. F. G., Pirko, I., & Lucchinetti, C. F. (2013). Pathology of multiple sclerosis: Where do we stand? In CONTINUUM lifelong learning in neurology (Vol. 19(4), pp. 901-921). https://doi.org/10.1212/01.CON.0000433291.23091.65
  54. Praet, J., Guglielmetti, C., Berneman, Z., Van der Linden, A., & Ponsaerts, P. (2014). Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neuroscience and Biobehavioral Reviews, 47, 485-505. https://doi.org/10.1016/j.neubiorev.2014.10.004
  55. Quarto, G., Autorino, R., Gallo, A., Sio, M., D'Armiento, M., Perdonà, S., & Damiano, R. (2007). Quality of life in women with multiple sclerosis and overactive bladder syndrome. International Urogynecology Journal and Pelvic Floor Dysfunction, 18(2), 189-194. https://doi.org/10.1007/S00192-006-0131-9
  56. Raine, C. S., Barnett, L. B., Brown, A., Behar, T., & McFarlin, D. E. (1980). Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Laboratory Investigation; A Journal of Technical Methods and Pathology, 43(2), 150-157 https://pubmed.ncbi.nlm.nih.gov/7401630/
  57. Ramasamy, R., & Smith, P. P. (2021a, March). PART 2: Mouse models for multiple sclerosis research. Neurourology and Urodynamics, 40(4), 958-967. https://doi.org/10.1002/nau.24654
  58. Ramasamy, R., & Smith, P. P. (2021b). Animal modeling of lower urinary tract dysfunction associated with multiple sclerosis: Part I: Justification of the mouse model for MS research. Neurourology and Urodynamics, 40(4), 950-957. https://doi.org/10.1002/nau.24649
  59. Rantell, A., Lu, Y., Averbeck, M. A., Badawi, J. K., Rademakers, K., Tarcan, T., Cardozo, L., Djurhuus, J. C., & Castro-Diaz, D. (2018). What is the utility of urodynamics, including ambulatory, and 24 h monitoring, in predicting upper urinary tract damage in neuro-urological patients and other lower urinary tract dysfunction? ICI-RS 2017. Neurourology and Urodynamics, 37(S4), S25-S31. https://doi.org/10.1002/NAU.23599
  60. Sakakibara, R. (2019). Neurogenic lower urinary tract dysfunction in multiple sclerosis, neuromyelitis optica, and related disorders. Clinical Autonomic Research: Official Journal of the Clinical Autonomic Research Society, 29(3), 313-320. https://doi.org/10.1007/S10286-018-0551-X
  61. Sim, F. J., Zhao, C., Penderis, J., & Franklin, R. J. M. (2002). The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(7), 2451-2459. https://doi.org/10.1523/JNEUROSCI.22-07-02451.2002
  62. Skripuletz, T., Gudi, V., Hackstette, D., & Stangel, M. (2011). De- and remyelination in the CNS white and grey matter induced by cuprizone: The old, the new, and the unexpected. Histology and Histopathology, 26(12), 1585-1597. https://doi.org/10.14670/HH-26.1585
  63. Smith, P. P., Deangelis, A., & Kuchel, G. A. (2012a). Detrusor expulsive strength is preserved, but responsiveness to bladder filling and urinary sensitivity is diminished in the aging mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 302(5), R577-R586. https://doi.org/10.1152/ajpregu.00508.2011
  64. Smith, P. P., Deangelis, A. M., & Kuchel, G. A. (2012b). Evidence of central modulation of bladder compliance during filling phase. Neurourology and Urodynamics, 31(1), 30-35. https://doi.org/10.1002/NAU.21223
  65. Smith, P. P., & Kuchel, G. A. (2010). Continuous uroflow cystometry in the urethane-anesthetized mouse. Neurourology and Urodynamics, 29(7), 1344-1349. https://doi.org/10.1002/nau.20850
  66. Tasaki, I., & Frank, K. (1955). Measurement of the action potential of myelinated nerve fiber. American Journal of Physiology-Legacy Content, 182(3), 572-578.
  67. Thorpe, L. U., Knox, K., Jalbert, R., Hyun-Ja Lim, J., Nickel, D., & Hader, W. J. (2015). Predictors of institutionalization for people with multiple sclerosis. Disability and Health Journal, 8(2), 271-277. https://doi.org/10.1016/J.DHJO.2014.10.002
  68. Torad, H., Shalaby, N., Hussein, H. A., Sadek, S. Z., Abdelazim, M. S., Yehia, A., Morsy, S., & Soliman, S. H. (2020). Bladder and urodynamic changes in multiple sclerosis. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 56(1), 1-6. https://doi.org/10.1186/S41983-020-00178-Z/TABLES/6
  69. Torkildsen, Ø., Brunborg, L. A., Myhr, K. M., & Bø, L. (2008). The cuprizone model for demyelination. Acta Neurologica Scandinavica, 117(Suppl. 188), 72-76. https://doi.org/10.1111/j.1600-0404.2008.01036.x
  70. Vega-Riquer, J. M., Mendez-Victoriano, G., Morales-Luckie, R. A., & Gonzalez-Perez, O. (2019). Five decades of cuprizone, an updated model to replicate demyelinating diseases. Current Neuropharmacology, 17(2), 129-141. https://doi.org/10.2174/1570159x15666170717120343
  71. Vignes, J. R., Deloire, M. S. A., Petry, K. G., & Nagy, F. (2007). Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats. Journal of Physiology, 578(2), 439-450. https://doi.org/10.1113/jphysiol.2006.117366
  72. Wegner, K. A., Abler, L. L., Oakes, S. R., Mehta, G. S., Ritter, K. E., Hill, W. G., Zwaans, B. M., Lamb, L. E., Wang, Z., Bjorling, D. E., Ricke, W. A., Macoska, J., Marker, P. C., Southard-Smith, E. M., Eliceiri, K. W., & Vezina, C. M. (2018). Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. American Journal of Physiology - Renal Physiology, 315(4), F1067-F1080. https://doi.org/10.1152/ajprenal.00245.2018
  73. Wergeland, S., Torkildsen, Ø., Myhr, K. M., Mørk, S. J., & Bø, L. (2012). The cuprizone model: Regional heterogeneity of pathology. APMIS, 120(8), 648-657. https://doi.org/10.1111/j.1600-0463.2012.02882.x
  74. Werneburg, S, Jung, J, Kunjamma, R.B., Ha S-K, Luciano N.J., Willis, C.M., Gao G, Biscola N.P., Havton L.A., Crocker, S.J., Popko, B, Reich, D.S., Schafer, D.P. (2020) Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity 52(1): 167-182.e7. https://doi.org/10.1016/j.immuni.2019.12.004.
  75. Woyciechowska, J. L., Trapp, B. D., Patrick, D. H., Shekarchi, I. C., Leinikki, P. O., Sever, J. L., & Holmes, K. V. (1984). Acute and subacute demyelination induced by mouse hepatitis virus strain A59 in C3H mice. Journal of Experimental Pathology, 1(4), 295-306.
  76. Yin, X., Baek, R. C., Kirschner, D. A., Peterson, A., Fujii, Y., Nave, K. A., Macklin, W. B., & Trapp, B. D. (2006). Evolution of a neuroprotective function of central nervous system myelin. The Journal of Cell Biology, 172(3), 469-479. https://doi.org/10.1083/JCB.200509174

Grants

  1. R01AG058814/NIH HHS
  2. R21 NS125332-01/NIH HHS

MeSH Term

Animals
Brain Stem
Corpus Callosum
Cuprizone
Demyelinating Diseases
Disease Models, Animal
Humans
Inflammation
Mice
Mice, Inbred C57BL
Multiple Sclerosis
Myelin Sheath
Oligodendroglia
Quality of Life
Reflex
Urination

Chemicals

Cuprizone

Word Cloud

Created with Highcharts 10.0.0demyelinationbladderdysfunctioncuprizoneCNSurinarybehaviorMSbrainstemfunctiontreatmentvoidingchronicdemyelinatingdiseaseinflammationpotentialmicturitioncortexspinalcordalterationscorpuscallosumindependentmiceremyelinationconfirmedconsciouscorticalreflexcystometryMultiplesclerosisprogressivelydebilitatingcentralnervoussystemNearly80%patientsexperiencelowertractearlydiagnosissignificantlyaffectsqualitylifelatterstagesleadingcausehospitalizationPreviouslyanimalmodelsshowninflammatorycausesprofoundconfoundinginfluencesystemiclimitsinterpretationcontributionSincecircuitmyelinatedneuronalconnectionsexaminedmodelcharacterizedlesionsT-cell-mediatedautoimmunityHereinreport4-weekdietaryC57Bl/6JinducedincreasedfrequencyreducedvolumevoidedsimilarhumanSubsequentlyrecoveryrestorednormalDemyelinationLuxolFastBluestainingAdditionallyalsodetermined8-weekresultinglackingspontaneousassociatedexacerbatedphenotypeInterestinglycuprizone-inducedseverelyaffectedremainedunchangedurethane-anesthetizedfirststudyshowcannegativelyimpactCuprizone-mediatedreversiblydegradessparingRRID:SCR_001620RRID:SCR_002285RRID:SCR_002798

Similar Articles

Cited By

No available data.