Methods for Using the Galleria mellonella Invertebrate Model to Probe Enterococcus faecalis Pathogenicity.

Ling Ning Lam, Debra N Brunson, Jessica K Kajfasz, José A Lemos
Author Information
  1. Ling Ning Lam: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.
  2. Debra N Brunson: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.
  3. Jessica K Kajfasz: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.
  4. José A Lemos: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA. jlemos@dental.ufl.edu.

Abstract

The Enterococci, mainly Enterococcus faecalis and E. faecium, are ubiquitous members of the human gastrointestinal tract consortia but also a leading cause of opportunistic infections. The global rise in human-associated enterococcal infections, often caused by multidrug resistant strains, highlights an urgent need to identify the bacterial factors contributing to its pathogenicity such that new therapies can be devised. The use of the Galleria mellonella (greater wax moth) larvae, commonly known as wax worm, as a model to study host-pathogen interactions has allowed the identification and characterization of numerous bacterial factors that contribute to disease in humans, serving both as an alternative and complementary approach to mammalian models. Here, we describe the methods for using G. mellonella to characterize the virulence factors of E. faecalis.

Keywords

References

  1. Garsin DA, Frank KL, Silanpää J, Ausubel FM, Hartke A, Shankar N, Murray BE (2014) Pathogenesis and models of enterococcal infection. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA
  2. Agudelo Higuita NI, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA
  3. Ramarao N, Nielsen-Leroux C, Lereclus D (2012) The insect galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. JoVE 70:e4392. https://doi.org/10.3791/4392 [DOI: 10.3791/4392]
  4. Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA (2018) Manganese acquisition is essential for virulence of enterococcus faecalis. PLoS Pathog 14:e1007102–e1007102. https://doi.org/10.1371/journal.ppat.1007102 [DOI: 10.1371/journal.ppat.1007102]
  5. Loh JM, Adenwalla N, Wiles S, Proft T (2013) Galleria mellonella larvae as an infection model for group a streptococcus. Virulence 4:419–428. doi: https://doi.org/10.4161/viru.24930
  6. Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM (2011) Virulence of serotype M3 group a streptococcus strains in wax worms (galleria mellonella larvae). Virulence 2:111–119. https://doi.org/10.4161/viru.2.2.14338 [DOI: 10.4161/viru.2.2.14338]
  7. Evans BA, Rozen DE (2012) A Streptococcus pneumoniae infection model in larvae of the wax moth galleria mellonella. Eur J Clin Microbiol Infec Dis 31:2653–2660. https://doi.org/10.1007/s10096-012-1609-7 [DOI: 10.1007/s10096-012-1609-7]
  8. Desbois AP, Coote PJ (2011) Wax moth larva (galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chem 66:1785–1790. https://doi.org/10.1093/jac/dkr198 [DOI: 10.1093/jac/dkr198]
  9. Peleg AY, Monga D, Pillai S, Mylonakis E, Moellering RC Jr, Eliopoulos GM (2009) Reduced susceptibility to vancomycin influences pathogenicity in Staphylococcus aureus infection. J Infec Dis 199(4):532–536. https://doi.org/10.1086/596511 [DOI: 10.1086/596511]
  10. Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bächi B, Senn MM (2013) Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. PLoS One 8:e63513. https://doi.org/10.1371/journal.pone.0063513 [DOI: 10.1371/journal.pone.0063513]
  11. Mukherjee K, Raju R, Fischer R, Vilcinskas A (2013) Galleria mellonella as a model host to study gut microbe homeostasis and brain infection by the human pathogen listeria monocytogenes. Adv Biochem Engin/Biotech 135:27–39. doi: https://doi.org/10.1007/10_2013_203
  12. Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying listeria pathogenesis. Appl Environ Microbiol 76:310–317. doi: https://doi.org/10.1128/aem.01301-09
  13. Joyce SA, Gahan CGM (2010) Molecular pathogenesis of listeria monocytogenes in the alternative model host galleria mellonella. Microbiology 156:3456–3468. https://doi.org/10.1099/mic.0.040782-0 [DOI: 10.1099/mic.0.040782-0]
  14. Kavanagh K, Reeves EP (2004) Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28:101–112. https://doi.org/10.1016/j.femsre.2003.09.002 [DOI: 10.1016/j.femsre.2003.09.002]
  15. Tsai CJ-Y, Loh JMS, Proft T (2016) Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7:214–229. doi: https://doi.org/10.1080/21505594.2015.1135289
  16. Goh HMS, Yong MHA, Chong KKL, Kline KA (2017) Model systems for the study of enterococcal colonization and infection. Virulence 8:1525–1562. https://doi.org/10.1080/21505594.2017.1279766 [DOI: 10.1080/21505594.2017.1279766]

Grants

  1. R21 AI135158/NIAID NIH HHS
  2. R21 AI137446/NIAID NIH HHS
  3. T90 DE021990/NIDCR NIH HHS

MeSH Term

Animals
Disease Models, Animal
Enterococcus faecalis
Larva
Moths
Virulence
Virulence Factors

Chemicals

Virulence Factors

Word Cloud

Created with Highcharts 10.0.0mellonellaEnterococcusfaecalisinfectionsfactorsGalleriaEbacterialwaxwormmodelvirulenceInvertebrateEnterococcimainlyfaeciumubiquitousmembershumangastrointestinaltractconsortiaalsoleadingcauseopportunisticglobalrisehuman-associatedenterococcaloftencausedmultidrugresistantstrainshighlightsurgentneedidentifycontributingpathogenicitynewtherapiescandevisedusegreatermothlarvaecommonlyknownstudyhost-pathogeninteractionsallowedidentificationcharacterizationnumerouscontributediseasehumansservingalternativecomplementaryapproachmammalianmodelsdescribemethodsusingGcharacterizeMethodsUsingModelProbePathogenicityBacterialEnterococcalWax

Similar Articles

Cited By