Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes.

Yali Hou, Shilei Zhao, Qi Liu, Xiaolong Zhang, Tong Sha, Yankai Su, Wenming Zhao, Yiming Bao, Yongbiao Xue, Hua Chen
Author Information
  1. Yali Hou: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  2. Shilei Zhao: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  3. Qi Liu: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  4. Xiaolong Zhang: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  5. Tong Sha: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  6. Yankai Su: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  7. Wenming Zhao: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  8. Yiming Bao: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  9. Yongbiao Xue: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: ybxue@big.ac.cn.
  10. Hua Chen: Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China. Electronic address: chenh@big.ac.cn.

Abstract

SARS-CoV-2 is a new RNA virus affecting humans and spreads extensively throughout the world since its first outbreak in December, 2019. Whether the transmissibility and pathogenicity of SARS-CoV-2 in humans after zoonotic transfer are actively evolving, and driven by adaptation to the new host and environments is still under debate. Understanding the evolutionary mechanism underlying epidemiological and pathological characteristics of COVID-19 is essential for predicting the epidemic trend, and providing guidance for disease control and treatments. Interrogating novel strategies for identifying natural selection using within-species polymorphisms and 3,674,076 SARS-CoV-2 genome sequences of 169 countries as of December 30, 2021, we demonstrate with population genetic evidence that during the course of SARS-CoV-2 pandemic in humans, 1) SARS-CoV-2 genomes are overall conserved under purifying selection, especially for the 14 genes related to viral RNA replication, transcription, and assembly; 2) ongoing positive selection is actively driving the evolution of 6 genes (e.g., S, ORF3a, and N) that play critical roles in molecular processes involving pathogen-host interactions, including viral invasion into and egress from host cells, and viral inhibition and evasion of host immune response, possibly leading to high transmissibility and mild symptom in SARS-CoV-2 evolution. According to an established haplotype phylogenetic relationship of 138 viral clusters, a spatial and temporal landscape of 556 critical mutations is constructed based on their divergence among viral haplotype clusters or repeatedly increase in frequency within at least 2 clusters, of which multiple mutations potentially conferring alterations in viral transmissibility, pathogenicity, and virulence of SARS-CoV-2 are highlighted, warranting attention.

Keywords

References

  1. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  2. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):640-647 [PMID: 32663617]
  3. Nat Med. 2020 Apr;26(4):450-452 [PMID: 32284615]
  4. Sci Adv. 2020 Jul 1;6(27): [PMID: 32937441]
  5. Sci China Life Sci. 2020 Sep;63(9):1413-1416 [PMID: 32291557]
  6. Microbiol Mol Biol Rev. 2012 Jun;76(2):159-216 [PMID: 22688811]
  7. Signal Transduct Target Ther. 2021 Mar 11;6(1):119 [PMID: 33707416]
  8. Science. 2021 Feb 12;371(6530):741-745 [PMID: 33436525]
  9. Curr Biol. 2021 Jul 26;31(14):R918-R929 [PMID: 34314723]
  10. J Biol Chem. 2009 Nov 20;284(47):32725-34 [PMID: 19801669]
  11. Nature. 2021 Apr;592(7852):116-121 [PMID: 33106671]
  12. Mol Biol Evol. 2008 Jun;25(6):1007-15 [PMID: 18195052]
  13. iScience. 2023 Mar 17;26(3):106210 [PMID: 36811085]
  14. J Chem Inf Model. 2020 Dec 28;60(12):5853-5865 [PMID: 32530284]
  15. Proc Natl Acad Sci U S A. 2021 Jul 20;118(29): [PMID: 34292871]
  16. Cell. 2021 Jan 7;184(1):64-75.e11 [PMID: 33275900]
  17. J Virol. 2020 Jun 1;94(12): [PMID: 32238584]
  18. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  19. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  20. Yi Chuan. 2020 Feb 20;42(2):212-221 [PMID: 32102777]
  21. Nanoscale. 2021 Apr 21;13(15):7285-7293 [PMID: 33889923]
  22. Nat Commun. 2021 May 11;12(1):2642 [PMID: 33976134]
  23. Dev Cell. 2021 Dec 6;56(23):3250-3263.e5 [PMID: 34706264]
  24. Quant Biol. 2020;8(1):11-19 [PMID: 32219006]
  25. Nat Rev Genet. 2018 Dec;19(12):756-769 [PMID: 30305704]
  26. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  27. Curr Opin Immunol. 2018 Oct;54:109-114 [PMID: 30015086]
  28. PeerJ. 2020 Oct 16;8:e10234 [PMID: 33088633]
  29. Protein J. 2020 Jun;39(3):198-216 [PMID: 32447571]
  30. J Biomed Sci. 2020 Jun 7;27(1):73 [PMID: 32507105]
  31. Nat Commun. 2021 Aug 2;12(1):4664 [PMID: 34341353]
  32. Genetics. 2006 Jun;173(2):821-37 [PMID: 16582427]
  33. Mol Biol Evol. 2021 Jul 29;38(8):3046-3059 [PMID: 33942847]
  34. Nature. 2021 Apr;592(7852):122-127 [PMID: 33636719]
  35. Infect Genet Evol. 2010 Apr;10(3):421-30 [PMID: 19524068]
  36. Euro Surveill. 2020 Apr;25(15): [PMID: 32317050]
  37. mSystems. 2020 May 5;5(3): [PMID: 32371472]
  38. Natl Sci Rev. 2020 Jun;7(6):1012-1023 [PMID: 34676127]
  39. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):407-412 [PMID: 32335367]
  40. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  41. Nat Commun. 2021 Dec 14;12(1):7239 [PMID: 34907182]
  42. Nat Commun. 2020 Jul 24;11(1):3718 [PMID: 32709886]
  43. Genome Biol Evol. 2021 Apr 5;13(4): [PMID: 33713114]
  44. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28344-28354 [PMID: 33097660]
  45. Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623 [PMID: 32416961]
  46. Cell Mol Immunol. 2020 Aug;17(8):881-883 [PMID: 32555321]
  47. Sci Am. 1979 Nov;241(5):98-100, 102, 108 passim [PMID: 504979]
  48. Curr Biol. 2020 Aug 3;30(15):R849-R857 [PMID: 32750338]
  49. Front Microbiol. 2020 Oct 23;11:550674 [PMID: 33193132]
  50. J Transl Med. 2020 Apr 22;18(1):179 [PMID: 32321524]
  51. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  52. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33361333]
  53. Nature. 2022 Mar;603(7902):693-699 [PMID: 35062016]
  54. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

MeSH Term

Humans
SARS-CoV-2
COVID-19
Phylogeny
Genome, Viral
Mutation
Evolution, Molecular

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2viralselectionhumanstransmissibilityhostevolutionclustersnewRNADecemberpathogenicityactivelyCOVID-19genes2criticalhaplotypemutationsvirusaffectingspreadsextensivelythroughoutworldsincefirstoutbreak2019WhetherzoonotictransferevolvingdrivenadaptationenvironmentsstilldebateUnderstandingevolutionarymechanismunderlyingepidemiologicalpathologicalcharacteristicsessentialpredictingepidemictrendprovidingguidancediseasecontroltreatmentsInterrogatingnovelstrategiesidentifyingnaturalusingwithin-speciespolymorphisms3674076genomesequences169countries302021demonstratepopulationgeneticevidencecoursepandemic1genomesoverallconservedpurifyingespecially14relatedreplicationtranscriptionassemblyongoingpositivedriving6egSORF3aNplayrolesmolecularprocessesinvolvingpathogen-hostinteractionsincludinginvasionegresscellsinhibitionevasionimmuneresponsepossiblyleadinghighmildsymptomAccordingestablishedphylogeneticrelationship138spatialtemporallandscape556constructedbaseddivergenceamongrepeatedlyincreasefrequencywithinleastmultiplepotentiallyconferringalterationsvirulencehighlightedwarrantingattentionOngoingPositiveSelectionDrivesEvolutionGenomesDarwinianNaturalViral

Similar Articles

Cited By