Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system.

Kiyoshi Inoue, Charles L Ford, Kengo Horie, Larry J Young
Author Information
  1. Kiyoshi Inoue: Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA. ORCID
  2. Charles L Ford: Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.
  3. Kengo Horie: Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA. ORCID
  4. Larry J Young: Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA. ORCID

Abstract

Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.

Keywords

References

  1. Nat Neurosci. 2004 Oct;7(10):1048-54 [PMID: 15452576]
  2. Nature. 2018 Apr;556(7701):326-331 [PMID: 29643503]
  3. Neuron. 2018 Nov 7;100(3):593-608.e3 [PMID: 30293821]
  4. J Neuroendocrinol. 1996 Oct;8(10):777-83 [PMID: 8910808]
  5. J Neuroendocrinol. 1991 Apr 1;3(2):155-61 [PMID: 19215517]
  6. Nature. 2015 Apr 23;520(7548):499-504 [PMID: 25874674]
  7. Nat Neurosci. 2014 Aug;17(8):1022-30 [PMID: 25065439]
  8. Front Neurosci. 2017 Jul 11;11:397 [PMID: 28744194]
  9. J Neurosci. 1995 Jul;15(7 Pt 1):5058-64 [PMID: 7623134]
  10. Neuropsychopharmacology. 2021 Jan;46(2):297-304 [PMID: 32450570]
  11. Nat Rev Neurosci. 2015 Jan;16(1):55-61 [PMID: 25406711]
  12. Trends Neurosci. 2010 Feb;33(2):103-9 [PMID: 20005580]
  13. PLoS One. 2009;4(3):e4770 [PMID: 19274089]
  14. J Neurosci. 2018 Jan 31;38(5):1218-1231 [PMID: 29279308]
  15. Psychoneuroendocrinology. 2016 Dec;74:164-172 [PMID: 27632574]
  16. Neuropsychopharmacology. 2015 Jul;40(8):1856-65 [PMID: 25652247]
  17. Horm Behav. 2019 Apr;110:46-55 [PMID: 30836063]
  18. Curr Biol. 2022 Mar 14;32(5):1026-1037.e4 [PMID: 35108521]
  19. Nat Commun. 2018 Oct 9;9(1):4163 [PMID: 30301899]
  20. J Neuroendocrinol. 1997 Nov;9(11):859-65 [PMID: 9419837]
  21. Horm Behav. 2012 Mar;61(3):445-53 [PMID: 22285648]
  22. Neurosci Biobehav Rev. 2016 Sep;68:370-386 [PMID: 27235078]
  23. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26406-26413 [PMID: 33020267]
  24. Neurosci Biobehav Rev. 2019 Aug;103:119-132 [PMID: 31194999]
  25. Curr Biol. 2019 Jun 17;29(12):1938-1953.e6 [PMID: 31178317]
  26. Endocrinology. 2007 Oct;148(10):5095-104 [PMID: 17628000]
  27. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  28. Nat Rev Neurosci. 2018 Nov;19(11):643-654 [PMID: 30301953]
  29. Nat Neurosci. 2006 Jan;9(1):133-9 [PMID: 16327783]
  30. Nat Neurosci. 2017 Nov;20(11):1580-1590 [PMID: 28920934]
  31. Nature. 2023 Sep;621(7980):788-795 [PMID: 37730989]
  32. Cell Rep. 2019 Feb 12;26(7):1747-1758.e5 [PMID: 30759387]
  33. Behav Brain Res. 2013 Jun 1;246:139-47 [PMID: 23500897]
  34. Sci Rep. 2020 Mar 25;10(1):5435 [PMID: 32214126]
  35. Am J Physiol Regul Integr Comp Physiol. 2015 Mar 1;308(5):R360-9 [PMID: 25540101]
  36. Nat Neurosci. 2018 Mar;21(3):404-414 [PMID: 29379116]
  37. PLoS One. 2012;7(1):e29345 [PMID: 22238603]
  38. Psychoneuroendocrinology. 2021 Jun;128:105209 [PMID: 33839431]
  39. Front Mol Neurosci. 2020 Mar 18;13:40 [PMID: 32256314]
  40. Neuroscience. 2020 Nov 10;448:312-324 [PMID: 33092784]
  41. J Neurosci. 2009 Feb 18;29(7):2259-71 [PMID: 19228979]
  42. Neuropsychopharmacology. 2020 Aug;45(9):1423-1430 [PMID: 32198453]
  43. J Comp Neurol. 2018 Aug 1;526(11):1820-1842 [PMID: 29665010]
  44. Nat Commun. 2019 Feb 8;10(1):668 [PMID: 30737392]
  45. Psychoneuroendocrinology. 2015 Dec;62:36-46 [PMID: 26231445]
  46. J Neuroendocrinol. 2017 Oct 12;: [PMID: 29024187]
  47. Neurosci Res. 2018 Apr;129:17-23 [PMID: 28577978]
  48. Neurosci Biobehav Rev. 2017 May;76(Pt A):87-98 [PMID: 28434591]
  49. Science. 2016 Jan 22;351(6271):375-8 [PMID: 26798013]
  50. Horm Behav. 2016 Jan;77:132-40 [PMID: 25910577]
  51. Curr Opin Neurobiol. 2021 Jun;68:29-35 [PMID: 33421771]
  52. J Neurosci. 2016 Feb 24;36(8):2517-35 [PMID: 26911697]
  53. Neurosci Biobehav Rev. 2019 Dec;107:388-398 [PMID: 31560922]
  54. Sci Rep. 2021 Feb 12;11(1):3746 [PMID: 33580133]
  55. Nat Commun. 2017 Dec 8;8(1):2001 [PMID: 29222469]
  56. Nature. 2013 Sep 12;501(7466):179-84 [PMID: 24025838]
  57. Nature. 2013 Aug 22;500(7463):458-62 [PMID: 23913275]
  58. Curr Opin Neurobiol. 2021 Jun;68:1-8 [PMID: 33260106]
  59. Proc Natl Acad Sci U S A. 1989 Jan;86(2):750-4 [PMID: 2536177]
  60. Horm Behav. 2016 Jan;77:98-112 [PMID: 26062432]
  61. Neuron. 2018 Jan 17;97(2):434-449.e4 [PMID: 29307710]
  62. Science. 2014 Aug 15;345(6198):771-6 [PMID: 25124431]
  63. Psychoneuroendocrinology. 2016 Feb;64:66-78 [PMID: 26615473]
  64. Transl Psychiatry. 2017 Apr 18;7(4):e1099 [PMID: 28418398]
  65. Science. 2008 Nov 7;322(5903):900-4 [PMID: 18988842]
  66. Gen Comp Endocrinol. 2020 Jan 15;286:113337 [PMID: 31734142]
  67. Brain Struct Funct. 2017 Mar;222(2):981-1006 [PMID: 27389643]
  68. J Neuroendocrinol. 2020 Apr;32(4):e12828 [PMID: 31925983]
  69. Nature. 2021 Jan;589(7841):258-263 [PMID: 33268894]
  70. J Comp Neurol. 2013 Jun 1;521(8):1844-66 [PMID: 23172108]
  71. Curr Top Behav Neurosci. 2018;35:559-590 [PMID: 28812273]
  72. Science. 1990 Nov 2;250(4981):691-4 [PMID: 2173139]
  73. Front Neuroanat. 2014 Sep 26;8:104 [PMID: 25309345]
  74. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12736-41 [PMID: 11606726]
  75. Neuroscience. 2003;121(3):537-44 [PMID: 14568015]
  76. Science. 2015 Apr 17;348(6232):333-6 [PMID: 25883356]
  77. J Neurosci. 2001 Oct 15;21(20):8278-85 [PMID: 11588199]
  78. Behav Neurosci. 2009 Oct;123(5):979-91 [PMID: 19824764]
  79. Neuron. 2016 May 4;90(3):609-21 [PMID: 27112498]
  80. Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):268-273 [PMID: 28028227]
  81. Nat Rev Neurosci. 2006 Feb;7(2):126-36 [PMID: 16429122]
  82. J Comp Neurol. 2009 Oct 1;516(4):321-33 [PMID: 19637308]
  83. J Neuroendocrinol. 2016 Apr;28(4): [PMID: 26940141]
  84. J Neuroendocrinol. 2021 Nov;33(11):e13004 [PMID: 34218479]
  85. Proc Natl Acad Sci U S A. 2012 Jun 26;109 Suppl 1:10685-92 [PMID: 22723363]
  86. Nat Rev Neurol. 2022 Feb;18(2):67-68 [PMID: 34880473]
  87. Nature. 2021 Aug;596(7873):553-557 [PMID: 34381215]
  88. J Neuroendocrinol. 2000 Dec;12(12):1145-8 [PMID: 11106970]
  89. Horm Behav. 2001 Sep;40(2):133-8 [PMID: 11534973]
  90. Horm Behav. 2016 Mar;79:8-17 [PMID: 26643557]
  91. Front Neuroanat. 2018 Oct 16;12:84 [PMID: 30459564]
  92. Science. 2017 Sep 29;357(6358):1406-1411 [PMID: 28963257]
  93. Neuroscience. 1987 Feb;20(2):599-614 [PMID: 3647280]
  94. Behav Neurosci. 1994 Dec;108(6):1163-71 [PMID: 7893408]
  95. Horm Behav. 2020 Aug;124:104780 [PMID: 32544402]
  96. Behav Brain Res. 2020 Sep 1;393:112790 [PMID: 32603799]
  97. J Neuroendocrinol. 1993 Dec;5(6):619-28 [PMID: 8680433]
  98. Int J Psychophysiol. 2019 Feb;136:54-63 [PMID: 29330007]
  99. Soc Neurosci. 2015;10(5):561-70 [PMID: 25874849]
  100. Biol Psychiatry. 2016 Jul 15;80(2):160-169 [PMID: 26893121]
  101. Horm Behav. 2019 May;111:60-69 [PMID: 30713102]
  102. Nature. 2020 Nov;587(7833):264-269 [PMID: 32968277]
  103. Am J Primatol. 2018 Oct;80(10):e22875 [PMID: 29797339]
  104. Annu Rev Neurosci. 2021 Jul 8;44:359-381 [PMID: 33823654]
  105. Transl Psychiatry. 2015 Jul 21;5:e606 [PMID: 26196439]
  106. Am J Primatol. 2018 Oct;80(10):e22756 [PMID: 29923206]
  107. J Clin Psychopharmacol. 2021 Mar-Apr 01;41(2):103-113 [PMID: 33587397]
  108. J Neurosci. 2009 Feb 4;29(5):1312-8 [PMID: 19193878]
  109. Compr Physiol. 2016 Dec 6;7(1):235-252 [PMID: 28135005]
  110. Neurosci Lett. 2006 Feb 13;394(2):146-51 [PMID: 16289323]
  111. iScience. 2022 Feb 26;25(4):103991 [PMID: 35310938]
  112. Neurosci Res. 1996 Feb;24(3):291-304 [PMID: 8815448]
  113. J Neurosci. 2019 Mar 13;39(11):2041-2051 [PMID: 30622165]
  114. Physiol Rev. 2018 Jul 1;98(3):1805-1908 [PMID: 29897293]
  115. Science. 2016 Sep 30;353(6307):1536-1541 [PMID: 27708103]
  116. J Comp Neurol. 2004 Jan 19;468(4):555-70 [PMID: 14689486]
  117. Nat Neurosci. 2020 Sep;23(9):1125-1137 [PMID: 32719563]
  118. J Exp Zool. 1996 Oct 1;276(2):151-6 [PMID: 8900077]
  119. Biotech Histochem. 2004 Feb;79(1):11-6 [PMID: 15223749]
  120. Brain Struct Funct. 2022 Jun;227(5):1907-1919 [PMID: 34482474]
  121. Int J Neuropsychopharmacol. 2020 Nov 26;23(8):511-523 [PMID: 31760433]
  122. Psychoneuroendocrinology. 2014 Jul;45:128-41 [PMID: 24845184]

Grants

  1. T32 GM008169/NIGMS NIH HHS
  2. P51 OD011132/NIH HHS
  3. /Emory National Primate Research Center
  4. P50 MH100023/NIMH NIH HHS
  5. R01 MH112788/NIMH NIH HHS

MeSH Term

Animals
Arvicolinae
Brain
Dopamine
Grassland
Nucleus Accumbens
Oxytocin
Polymorphism, Genetic
RNA, Messenger
Receptors, Dopamine
Receptors, Oxytocin
Social Behavior

Chemicals

RNA, Messenger
Receptors, Dopamine
Receptors, Oxytocin
Oxytocin
Dopamine

Word Cloud

Created with Highcharts 10.0.0oxytocinreceptorsocialmRNAexpressionreceptorsOxytocinbehaviorbraincellsnucleusaccumbensdopaminepolymorphismsprairievolethroughoutareasproteinD1D2neuralactivitysignalingbondingreceptor-expressingsituhybridizationbrain-wideindicatingtransporteddistalprocessesinvolvedsubtypesgeneticexpressedregulatesviadirectmodulationneuronsregulationnetworkinteractionneurotransmittersystemsbehavioraleffectsdeterminedspecies-specificdistributionsociallymonogamoususefulmodelorganismelucidatingrolebehaviorsincludingpairresponselossconsolingHowevercomprehensivemappingemployedhighlysensitiveRNAscopeconstructexhaustivemapmRNA-expressingfoundwidespreaddiffusedspecificdisplayingparticularlyrobustComparingbindingrevealedregionshippocampussubstantianigracontainedlackedcanneuronalconsistentpresynapticfunctionsregionoxytocin-dependentdetectedFurthermorenaturalrobustlyinfluencedcelltypesCollectivelyfindingselucidateextentcapableinfluencingresponsesstimuliKEYPOINTS:diffuselystrongconcentratedcertainlocalizationmisalignedmayexpressingmajorityvariationanimalsattributablegenewidelydistributedMicrotusochrogasterbrain:RelationsystemOxtrsinglenucleotideautoradiographyphenotypicplasticity

Similar Articles

Cited By