First derivative synchronous spectrofluorimetric analysis of bisoprolol fumarate and ivabradine in pharmaceutical and biological matrices. Investigation of the method greenness.

Shrouk M Abo Elkheir, Abdallah M Zeid, Jenny Jeehan M Nasr, Mohamed I Walash
Author Information
  1. Shrouk M Abo Elkheir: Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
  2. Abdallah M Zeid: Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt. ORCID
  3. Jenny Jeehan M Nasr: Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
  4. Mohamed I Walash: Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.

Abstract

A novel, facile, rapid, and precise synchronous spectrofluorimetric method was evolved for the simultaneous estimation of bisoprolol fumarate and ivabradine in dosage forms and biological fluids. The estimation is based on measuring the first derivative of the synchronous fluorescence spectra of ivabradine and bisoprolol fumarate in ethanol at Δλ = 80 nm. The peak amplitudes are measured at 234.4 nm (zero-crossing point of ivabradine) and 244.0 nm (zero-crossing point of bisoprolol fumarate) to simultaneously analyze bisoprolol fumarate and ivabradine, respectively. The spectrofluorimetric method was optimized by investigating different solvent systems, pH values, and surfactants. The proposed method was linear over concentration ranges 30.0-200.0 ng/ml and 30.0-180.0 ng/ml for ivabradine and bisoprolol fumarate, respectively with detection limits of 4.88 and 5.28 ng/ml. The developed method was used for individual assay of the studied compounds in their pharmaceutical dosage forms with high percentage recoveries. Moreover, the method was applied to analyze ivabradine and bisoprolol fumarate in spiked human urine with percentage recoveries of 99.98 ± 1.16 and 99.95 ± 1.96 for ivabradine and bisoprolol fumarate, respectively. The method greenness was also investigated by Analytical GREEnness (AGREE), Analytical Eco-Scale, and Green Analytical Procedure Index (GAPI) metrics, which ensured the ecofriendship of the proposed method.

Keywords

References

  1. S. C. Sweetman, Martindale: The complete drug reference, London, Pharmacutical Press 2005.
  2. S. Sulfi, A. Timmis, Int. J. Clin. Pract. 2006, 60, 222.
  3. S. Tse, N. Mazzola, Pharm. Therap. 2015, 40, 810.
  4. P. G. Thete, R. B. Saudagar, Asian J. Pharm. Pharmacol. 2018, 4, 697.
  5. P. A. Patil, H. A. Raj, G. B. Sonara, Asian J. Pharm. Anal. 2016, 6, 109.
  6. K. Patel, M. Motisariya, K. Patel, P. Shah, T. Gandhi, Pharm. Lett. 2014, 6, 8.
  7. A. K. Attia, N. F. Abo-Talib, M. H. Tammam, Adv. Pharm. Bull. 2017, 7, 151.
  8. B. Yilmaz, B. Akcay, J. Adv. Pharm. Res. 2020, 4, 139.
  9. P. Klippert, J.-P. Jeanniot, S. Polvé, C. Lefèvre, H. Merdjan, J. Chromatogr. B 1998, 719, 125.
  10. H. Patel, N. Jivani, World J. Pharm. Pharm. Sci. 2015, 4, 630.
  11. J. Tomić, N. Djajić, D. Agbaba, B. Otašević, A. Malenović, A. Protić, Acta Chromatogr. 2021, 34, 1.
  12. P. Pikul, J. Nowakowska, K. Ciura, J. Food Drug Anal. 2013, 21, 165.
  13. C. Lu, Y. Jia, J. Yang, X. Jin, Y. Song, W. Liu, Y. Ding, X. Sun, A. Wen, Acta Pharm. Sin. B 2012, 2, 205.
  14. The British Pharmacopoeia, London, UK 1998, 1, 2011416.
  15. The United State Pharmacopoeia Convention, USP 33 NF 28: United States Pharmacopeia [and] National Formulary. Reissue. Supplement 2. a, in Proceedings of the, 2010.
  16. S. Mohammed, M. Adam, S. Shantier, Mediterranean J. Chem. 2017, 6, 196.
  17. A. S. Atul, R. T. Rajesh, J. S. Sanjay, Pak. J. Pharm. Sci. 2008, 21, 366.
  18. M. M. Ayad, H. E. Abdellatef, M. M. Hosny, N. Kabil, Nano Biomed. Eng. 2019, 11, 1.
  19. N. S. Abdelwahab, N. W. Ali, M. M. Zaki, A. A. Ali, M. M. Abdelkawy, Eur. J. Chem. 2018, 9, 331.
  20. R. N. Goyal, A. Tyagi, N. Bachheti, S. Bishnoi, Electrochim. Acta 2008, 53, 2802.
  21. R. Zil'berg, Y. A. Yarkaeva, A. Sidel'nikov, V. Maistrenko, V. Kraikin, N. Gileva, J. Anal. Chem. 2016, 71, 926.
  22. R. Mourad, M. El badry Mohamed, E. Y. Frag, H. A. El-Boraey, S. S. El-Sanafery, Electroanalysis 2021, 33, 66.
  23. K. Elgendy, M. A. Elmosallamy, M. K. Soltan, A. S. Amin, D. S. Elshaprawy, Rev. Anal. Chem. 2021, 40, 127.
  24. T. Suzuki, Y. Horikiri, M. Mizobe, K. Noda, J. Chromatogr. B 1993, 619, 267.
  25. D. Vora, A. Kadav, Indian J. Pharm. Sci. 2008, 70, 542.
  26. S. J. Joshi, P. A. Karbhari, S. I. Bhoir, K. Bindu, C. Das, J. Pharm. Biomed. Anal. 2010, 52, 362.
  27. M. Piponski, T. Balkanov, L. Logoyda, Pharmacia 2021, 68, 69.
  28. G. Peste, N. Bibire, M. Apostu, A. Vlase, C. Oniscu, J. Biomed. Biotechnol. 2009, 2009, 1.
  29. E. Amosova, E. Andrejev, I. Zaderey, U. Rudenko, C. Ceconi, R. Ferrari, Cardiovasc. Drugs Ther. 2011, 25, 531.
  30. M. U. Rashid, M. K. H. Bhuiyan, M. E. Quayum, Dhaka Univ. J. Pharm. Sci. 2013, 12, 29.
  31. ICH Q2A (R1), Validation of Analytical Procedures: Text and Methodology International Conference on Harmonisation November 2005.
  32. J. Miller, J. C. Miller, Statistics and chemometrics for analytical chemistry, Pearson education, Harlow, England 2018.
  33. G. Leopold, J. Pabst, W. Ungethüm, K. U. Bühring, J. Clin.Pharmacol. 1986, 26, 616.
  34. A. Gałuszka, Z. M. Migaszewski, P. Konieczka, J. Namieśnik, TrAC Trends Analyt. Chem. 2012, 37, 61.
  35. J. Płotka-Wasylka, Talanta 2018, 181, 204.
  36. F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, Anal. Chem. 2020, 92, 10076.

MeSH Term

Bisoprolol
Ethanol
Humans
Ivabradine
Pharmaceutical Preparations
Solvents
Spectrometry, Fluorescence
Surface-Active Agents

Chemicals

Pharmaceutical Preparations
Solvents
Surface-Active Agents
Ivabradine
Ethanol
Bisoprolol

Word Cloud

Similar Articles

Cited By