Reconceptualizing the hyporheic zone for nonperennial rivers and streams.

Amanda G DelVecchia, Margaret Shanafield, Margaret A Zimmer, Michelle H Busch, Corey A Krabbenhoft, Rachel Stubbington, Kendra E Kaiser, Ryan M Burrows, Jake Hosen, Thibault Datry, Stephanie K Kampf, Samuel C Zipper, Ken Fritz, Katie Costigan, Daniel C Allen
Author Information
  1. Amanda G DelVecchia: Department of Biology, Duke University, 130 Science Drive, Durham, North Carolina 27708 USA.
  2. Margaret Shanafield: College of Science and Engineering, Flinders University, Ring Road, Bedford Park, South Australia 5042 Australia.
  3. Margaret A Zimmer: Department of Earth and Planetary Sciences, 1156 High Street, University of California, Santa Cruz, California 95064 USA.
  4. Michelle H Busch: Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019 USA.
  5. Corey A Krabbenhoft: Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, Minnesota 55108 USA.
  6. Rachel Stubbington: School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham NG11 8NS United Kingdom.
  7. Kendra E Kaiser: Geosciences Department, Boise State University, 1295 University Drive, Boise, Idaho 83725 USA.
  8. Ryan M Burrows: School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Boulevard, Burnley, Victoria 3121 Australia.
  9. Jake Hosen: Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, Indiana 47906 USA.
  10. Thibault Datry: French National Institute for Agriculture, Food, and the Environment, UR-RiverLy, Centre de Lyon-Villeurbanne, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, 5 rue de la Doua CS70077, 69626 Villeurbanne CEDEX France.
  11. Stephanie K Kampf: Department of Ecosystem Science and Sustainability, Colorado State University, 1476 Campus Delivery, Fort Collins, Colorado 80521 USA.
  12. Samuel C Zipper: Kansas Geological Survey, 1930 Constant Avenue, Lawrence, Kansas 66047 USA.
  13. Ken Fritz: Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mailstop 585, Cincinnati, Ohio 45268 USA.
  14. Katie Costigan: School of Geosciences, University of Louisiana, 611 McKinley Street, Hamilton Hall 323, P.O. Box 43717, Lafayette, Louisiana 70504USA.
  15. Daniel C Allen: Department of Ecosystem Science and Management, The Pennsylvania State University, 311 Forestry Resources Building, University Park, Pennsylvania 16802 USA.

Abstract

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.

Keywords

References

  1. J Appl Ecol. 2018;55(1):353-364 [PMID: 29681651]
  2. Microb Ecol. 2011 Apr;61(3):543-56 [PMID: 21153024]
  3. Oecologia. 1992 Feb;89(2):182-194 [PMID: 28312872]
  4. Environ Sci Technol. 2007 Feb 15;41(4):1225-31 [PMID: 17593723]
  5. Sci Rep. 2017 Oct 16;7(1):13198 [PMID: 29038431]
  6. Biol Rev Camb Philos Soc. 2016 Aug;91(3):796-812 [PMID: 25969869]
  7. ISME J. 2012 May;6(5):1078-88 [PMID: 22158391]
  8. Nat Commun. 2016 Nov 08;7:13163 [PMID: 27824032]
  9. Sci Total Environ. 2016 May 15;553:330-339 [PMID: 26930306]
  10. Ground Water. 2006 Nov-Dec;44(6):837-52 [PMID: 17087756]
  11. Sci Total Environ. 2017 Jan 1;575:378-389 [PMID: 27750134]
  12. Sci Total Environ. 2018 Apr 15;621:1233-1242 [PMID: 29070450]
  13. PLoS One. 2013 Oct 04;8(10):e76311 [PMID: 24124544]
  14. Sci Total Environ. 2020 Feb 10;703:135485 [PMID: 31761375]
  15. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7373-7378 [PMID: 28652354]
  16. PLoS One. 2016 Oct 10;11(10):e0164372 [PMID: 27723819]
  17. Science. 2014 Mar 7;343(6175):1080-1 [PMID: 24604183]
  18. Front Microbiol. 2015 May 21;6:506 [PMID: 26052322]
  19. Environ Microbiol Rep. 2017 Dec;9(6):756-765 [PMID: 28914489]
  20. Prog Mol Subcell Biol. 2010;49:183-208 [PMID: 20069410]
  21. Sci Total Environ. 2020 Apr 20;714:136838 [PMID: 32018979]
  22. Nature. 2021 Jun;594(7863):391-397 [PMID: 34135525]
  23. Water (Basel). 2020 Jul 13;12(7):1980 [PMID: 33274073]
  24. Sci Total Environ. 2021 May 15;769:144442 [PMID: 33482544]
  25. mSystems. 2020 Apr 14;5(2): [PMID: 32291352]
  26. PLoS One. 2013 May 31;8(5):e64109 [PMID: 23741302]
  27. Front Microbiol. 2015 Jun 04;6:522 [PMID: 26089816]
  28. Sci Total Environ. 2018 Jul 1;628-629:1308-1316 [PMID: 30045552]
  29. Sci Total Environ. 2020 Apr 15;713:136619 [PMID: 31958729]
  30. Sci Total Environ. 2017 Oct 15;596-597:465-480 [PMID: 28458222]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0hyporheiczonenonperennialstreamsurfacehydrologicalriversubsurfacesedimentsstreamsacrosswatercommunitiesecologicalriversdryconditionszonesstructureglobalspacetimeflowaquaticecosystemdefinitionshumidfunctionextentbiogeochemistryecologystatesresearchconceptualizationintermittenttemporaryNonperennialdominatenetworksincreasingoccurrenceceasesdriesmoisturecanretainedsupportingprocessesHoweverdevelopedperennialemphasizemixingorganismsrespectivelygroundwateradaptationincludeunsaturatedpromotecharacterizationbiogeochemicalvariabilityshapewithinadvancingunderstandinghabitatsconceptualizereviewsourcesinfluencephysicochemicalconsidermightvarylinkcomponentscompositionNextexamineliteratureidentifyprioritiesexploringLastlyintegratinghydrologyrecommendmultidisciplinaryporousstreambedshiftloticlenticsupportaquatic-terrestrialbiodiversitydryingincreaseschangecallholisticinterdisciplinaryterrestrialsciencesapplycharacterizefullspectrumReconceptualizingaquatic–terrestrialtransitionecotoneephemeralriverbed

Similar Articles

Cited By (5)