Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains.

Şeyda Kara, Cemil Kürekci, Muharrem Akcan
Author Information
  1. Şeyda Kara: Department of Biochemistry, Faculty of Arts and Sciences, Kütahya Dumlupınar University, 43100, Kütahya, Turkey. ORCID
  2. Cemil Kürekci: Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31030, Antakya, Hatay, Turkey. ORCID
  3. Muharrem Akcan: Department of Biochemistry, Faculty of Arts and Sciences, Kütahya Dumlupınar University, 43100, Kütahya, Turkey. muharrem.akcan@dpu.edu.tr. ORCID

Abstract

Naturally occurring frog skin peptides are one of largest sources of antimicrobial peptides that have many advantages including high potency, broad spectrum of targets and low susceptibility to multiple drug-resistance bacteria. However, they also have disadvantages such as hemolytic activity, low stability and high production costs. For these reasons, various strategies have been applied to overcome these drawbacks restricting their use in clinical trials. Previously reported brevinin-1GHa (BR-1GHa) is a 24 amino acid long antimicrobial peptide isolated from Hylarana guentheri with hemolytic activity. To enhance the antimicrobial activity of this peptide and to reduce its hemolytic activity, we designed five new temporin like analogues and examined their bioactivities. Temporins are another class of frog skin peptides without hemolytic activity and shorter than brevinins. When the antimicrobial activities of new analogues were examined against a panel of microorganisms, BR-1GHa-3, in which two alanine residues in the truncated version of BR-1GHa were replaced with leucine, exhibited significantly improved antimicrobial activity against Gram-positive bacterial strains (e.g., S. aureus ATCC 29213 and E. casseliflavus ATCC 700327) with lower hemolytic activity compared to the BR-1GHa peptide. Furthermore, BR-1GHa-4 analogue, in which Gly3 was replaced with Pro, did not show any hemolytic activity except for highest (128 µM) concentration tested and have a strong antimicrobial effect on Gram-positive bacteria (e.g., E. faecalis ATCC 51299 and B. cereus ATCC 13061).

Keywords

References

  1. Abbassi F, Oury B, Blasco T et al (2008) Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 29:1526–1533. https://doi.org/10.1016/j.peptides.2008.05.008 [DOI: 10.1016/j.peptides.2008.05.008]
  2. Abbassi F, Piesse C, Foulon T et al (2014) Effects of residue 5-point mutation and N-terminus hydrophobic residues on temporin-SHc physicochemical and biological properties. Mol Cell Biochem 394:91–99. https://doi.org/10.1007/s11010-014-2084-5 [DOI: 10.1007/s11010-014-2084-5]
  3. Amiss AS, Henriques ST, Lawrence N (2021) Antimicrobial peptides provide wider coverage for targeting drug-resistant bacterial pathogens. Peptide Sci. https://doi.org/10.1002/pep2.24246 [DOI: 10.1002/pep2.24246]
  4. Avitabile C, Netti F, Orefice G et al (2013) Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria. Biochim Biophys Acta Gen Subj 1830:3767–3775. https://doi.org/10.1016/j.bbagen.2013.01.026 [DOI: 10.1016/j.bbagen.2013.01.026]
  5. Barbosa EA, Oliveira A, Plácido A et al (2018) Structure and function of a novel antioxidant peptide from the skin of tropical frogs. Free Radical Biol Med 115:68–79. https://doi.org/10.1016/j.freeradbiomed.2017.11.001 [DOI: 10.1016/j.freeradbiomed.2017.11.001]
  6. Carotenuto A, Malfi S, Saviello MR et al (2008) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51:2354–2362. https://doi.org/10.1021/jm701604t [DOI: 10.1021/jm701604t]
  7. Chen Y, Guarnieri MT, Vasil AI et al (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406. https://doi.org/10.1128/AAC.00925-06 [DOI: 10.1128/AAC.00925-06]
  8. Chen Q, Cheng P, Ma C et al (2018) Evaluating the bioactivity of a novel broad-spectrum antimicrobial peptide brevinin-1GHa from the frog skin secretion of Hylarana guentheri and its analogues. Toxins 10:413. https://doi.org/10.3390/toxins10100413 [DOI: 10.3390/toxins10100413]
  9. Chen G, Miao Y, Ma C et al (2020) Brevinin-2GHK from Sylvirana guentheri and the design of truncated analogs exhibiting the enhancement of antimicrobial activity. Antibiotics. https://doi.org/10.3390/antibiotics9020085 [DOI: 10.3390/antibiotics9020085]
  10. Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica Et Biophysica Acta Proteins Proteomics 1696:1–14. https://doi.org/10.1016/j.bbapap.2003.09.004 [DOI: 10.1016/j.bbapap.2003.09.004]
  11. Conlon JM, Mechkarska M, Lukic ML, Flatt PR (2014) Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57:67–77. https://doi.org/10.1016/j.peptides.2014.04.019 [DOI: 10.1016/j.peptides.2014.04.019]
  12. Conlon JM, Mechkarska M, Leprince J (2019) Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 16:897–908. https://doi.org/10.1080/14789450.2019.1693894 [DOI: 10.1080/14789450.2019.1693894]
  13. Demori I, el Rashed Z, Corradino V et al (2019) Peptides for skin protection and healing in amphibians. Molecules 24:347. https://doi.org/10.3390/molecules24020347 [DOI: 10.3390/molecules24020347]
  14. di Grazi A, Luca V, Segev-Zarko LAT et al (2014) Temporins a and b stimulate migration of HaCaT keratinocytes and kill intracellular Staphylococcus aureus. Antimicrob Agents Chemother 58:2520–2527. https://doi.org/10.1128/AAC.02801-13 [DOI: 10.1128/AAC.02801-13]
  15. Dolle A, Nagati VB, Hunashal Y et al (2019) Disulfide engineering on temporin-SHf: stabilizing the bioactive conformation of an ultra-short antimicrobial peptide. Chem Biol Drug Des 94:1634–1646. https://doi.org/10.1111/cbdd.13525 [DOI: 10.1111/cbdd.13525]
  16. Gaussier H, Morency H, Lavoie MC, Subirade M (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 68:4803–4808. https://doi.org/10.1128/AEM.68.10.4803-4808.2002 [DOI: 10.1128/AEM.68.10.4803-4808.2002]
  17. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102. https://doi.org/10.1093/bioinformatics/btn392 [DOI: 10.1093/bioinformatics/btn392]
  18. Goff DA, Kullar R, Goldstein EJC et al (2017) A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect Dis 17:e56–e63. https://doi.org/10.1016/S1473-3099(16)30386-3 [DOI: 10.1016/S1473-3099(16)30386-3]
  19. Grieco P, Luca V, Auriemma L et al (2011) Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta. J Pept Sci 17:358–365. https://doi.org/10.1002/psc.1350 [DOI: 10.1002/psc.1350]
  20. He H, Chen Y, Ye Z et al (2020) Modification and targeted design of N-terminal truncates derived from brevinin with improved therapeutic efficacy. Biology 9:1–14. https://doi.org/10.3390/biology9080209 [DOI: 10.3390/biology9080209]
  21. Huang L, Chen D, Wang L et al (2017) Dermaseptin-PH: a novel peptide with antimicrobial and anticancer activities from the skin secretion of the South American orange-legged leaf frog, Pithecopus (phyllomedusa) hypochondrialis. Molecules 22:1805. https://doi.org/10.3390/molecules22101805 [DOI: 10.3390/molecules22101805]
  22. Jiang Y, Wu Y, Wang T et al (2020) Brevinin-1GHd: A novel Hylarana guentheri skin secretion-derived brevinin-1 type peptide with antimicrobial and anticancer therapeutic potential. Biosci Rep. https://doi.org/10.1042/BSR20200019
  23. Katzenback BA, Holden HA, Falardeau J et al (2014) Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration. J Exp Biol 217:1392–1401. https://doi.org/10.1242/jeb.092288 [DOI: 10.1242/jeb.092288]
  24. Kim S, Kim SS, Bang YJ et al (2003) In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 24:945–953. https://doi.org/10.1016/S0196-9781(03)00194-3 [DOI: 10.1016/S0196-9781(03)00194-3]
  25. Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111:e24122. https://doi.org/10.1002/pep2.24122 [DOI: 10.1002/pep2.24122]
  26. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: A program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55. https://doi.org/10.1016/0263-7855(96)00009-4 [DOI: 10.1016/0263-7855(96)00009-4]
  27. Kumari VK, Nagaraj R (2001) Structure-function studies on the amphibian peptide brevinin 1E: translocating the cationic segment from the C-terminal end to a central position favors selective antibacterial activity. J Peptide Res 58:433–441. https://doi.org/10.1034/j.1399-3011.2001.00924.x [DOI: 10.1034/j.1399-3011.2001.00924.x]
  28. Li R, He S, Yin K et al (2021) Effects of N-terminal modifications on the stability of antimicrobial peptide SAMP-A4 analogues against protease degradation. J Pept Sci 27:e3352. https://doi.org/10.1002/psc.3352 [DOI: 10.1002/psc.3352]
  29. Lin Y, Liu S, Xi X et al (2021) Study on the structure-activity relationship of an antimicrobial peptide, brevinin-2GUB, from the skin secretion of Hylarana guentheri. Antibiotics. https://doi.org/10.3390/antibiotics10080895 [DOI: 10.3390/antibiotics10080895]
  30. Liu S, Long Q, Xu Y et al (2017) Assessment of antimicrobial and wound healing effects of brevinin-2Ta against the bacterium Klebsiella pneumoniae in dermally-wounded rats. Oncotarget 8:111369–111385. https://doi.org/10.18632/oncotarget.22797 [DOI: 10.18632/oncotarget.22797]
  31. Liu Y, Du Q, Ma C et al (2019) Structure–activity relationship of an antimicrobial peptide, phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. Drug Des Dev Ther 13:447–458. https://doi.org/10.2147/DDDT.S191072 [DOI: 10.2147/DDDT.S191072]
  32. Mangoni ML, Carotenuto A, Auriemma L et al (2011) Structure-activity relationship, conformational and biological studies of temporin l analogues. J Med Chem 54:1298–1307. https://doi.org/10.1021/jm1012853 [DOI: 10.1021/jm1012853]
  33. Mangoni ML, di Grazia A, Cappiello F et al (2016) Naturally Occurring Peptides from Rana temporaria: antimicrobial Properties and More. Curr Top Med Chem 16:54–64. https://doi.org/10.2174/1568026615666150703121403 [DOI: 10.2174/1568026615666150703121403]
  34. Manzo G, Ferguson PM, Gustilo VB et al (2019) Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Sci Rep. https://doi.org/10.1038/s41598-018-37630-3 [DOI: 10.1038/s41598-018-37630-3]
  35. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discovery 19:311–332. https://doi.org/10.1038/s41573-019-0058-8 [DOI: 10.1038/s41573-019-0058-8]
  36. Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and -2 unique antimicrobial peptides from the skin of the frog. Rana Brevipoda Porsa 189:184–190
  37. Musale V, Casciaro B, Mangoni ML et al (2018) Assessment of the potential of temporin peptides from the frog Rana temporaria (Ranidae) as anti-diabetic agents. J Pept Sci. https://doi.org/10.1002/psc.3065 [DOI: 10.1002/psc.3065]
  38. Mwangi J, Hao X, Lai R, Zhang ZY (2019) Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 40:488–505. https://doi.org/10.24272/j.issn.2095-8137.2019.062 [DOI: 10.24272/j.issn.2095-8137.2019.062]
  39. Pál T, Abraham B, Sonnevend Á et al (2006) Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int J Antimicrob Agents 27:525–529. https://doi.org/10.1016/j.ijantimicag.2006.01.010 [DOI: 10.1016/j.ijantimicag.2006.01.010]
  40. Pei X, Gong Z, Wu Q et al (2021) Characterisation of a novel peptide, brevinin-1H, from the skin secretion of Amolops hainanensis and rational design of several analogues. Chem Biol Drug Des 97:273–282. https://doi.org/10.1111/cbdd.13779 [DOI: 10.1111/cbdd.13779]
  41. Raja Z, AndreA S, Abbassi F et al (2017) Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 12:e0174024. https://doi.org/10.1371/journal.pone.0174024 [DOI: 10.1371/journal.pone.0174024]
  42. Resende JM, Moraes CM, Prates MV et al (2008) Solution NMR structures of the antimicrobial peptides phylloseptin-1, -2, and -3 and biological activity: the role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides 29:1633–1644. https://doi.org/10.1016/j.peptides.2008.06.022 [DOI: 10.1016/j.peptides.2008.06.022]
  43. Romero SM, Cardillo AB, Martínez Ceron MC et al (2020) Temporins: an approach of potential pharmaceutic candidates. Surg Infect 21:309–322. https://doi.org/10.1089/sur.2019.266 [DOI: 10.1089/sur.2019.266]
  44. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5 [DOI: 10.1038/nprot.2010.5]
  45. Savelyeva A, Ghavami S, Davoodpour P et al (2014) An overview of brevinin superfamily: structure, function and clinical perspectives. Adv Exp Med Biol 818:197–212. https://doi.org/10.1007/978-1-4471-6458-6_10 [DOI: 10.1007/978-1-4471-6458-6_10]
  46. Simmaco M, Mignogna G, Canofeniz S et al (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242:788–792. https://doi.org/10.1111/j.1432-1033.1996.0788r.x [DOI: 10.1111/j.1432-1033.1996.0788r.x]
  47. Wade D, Silberring J, Soliymani R et al (2000) Antibacterial activities of temporin A analogs. FEBS Lett 479:6–9. https://doi.org/10.1016/s0014-5793(00)01754-3 [DOI: 10.1016/s0014-5793(00)01754-3]
  48. Wang G (2020) Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics 9:1–26. https://doi.org/10.3390/antibiotics9080491 [DOI: 10.3390/antibiotics9080491]
  49. Wang H, Lu Y, Zhang X et al (2009) The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylarana latouchii (Anura: Ranidae). Peptides 30:273–282. https://doi.org/10.1016/j.peptides.2008.10.016 [DOI: 10.1016/j.peptides.2008.10.016]
  50. Wang H, Ran R, Yu H et al (2012) Identification and characterization of antimicrobial peptides from skin of Amolops ricketti (Anura: Ranidae). Peptides 33:27–34. https://doi.org/10.1016/j.peptides.2011.10.030 [DOI: 10.1016/j.peptides.2011.10.030]
  51. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. https://doi.org/10.1093/nar/gkv1278 [DOI: 10.1093/nar/gkv1278]
  52. Wang W, Yang W, Du S et al (2021) Bioevaluation and targeted modification of temporin-FL from the skin secretion of dark-spotted frog (Pelophylax nigromaculatus). Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.707013 [DOI: 10.3389/fmolb.2021.707013]
  53. World Health Organization. (2012). "The evolving threat of antimicrobial resistance: options for action" Retrieved from http://apps.who.int/iris/bitstream/handle/10665/44812/9789241503181_eng.pdf;jsessionid=141EAB2F19C36 EA 283E7760AF394BD4E?sequence=1”.
  54. Xie Z, Wei H, Meng J et al (2019) The analogs of temporin-GHa exhibit a broader spectrum of antimicrobial activity and a stronger antibiofilm potential against Staphylococcus aureus. Molecules 24:4173. https://doi.org/10.3390/molecules24224173 [DOI: 10.3390/molecules24224173]
  55. Yang QZ, Wang C, Lang L et al (2013) Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharmacal Res 36:1302–1310. https://doi.org/10.1007/s12272-013-0112-8 [DOI: 10.1007/s12272-013-0112-8]
  56. Zai Y, Xi X, Ye Z et al (2021) Aggregation and its influence on the bioactivities of a novel antimicrobial peptide, temporin-PF, and its analogues. Int J Mol Sci 22:4509. https://doi.org/10.3390/ijms22094509 [DOI: 10.3390/ijms22094509]
  57. Zhang F, Guo ZL, Chen Y et al (2019) Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY, a novel antimicrobial peptide identified from the brown frog, Rana kunyuensis. Zool Res 40:198–204. https://doi.org/10.24272/j.issn.2095-8137.2018.070 [DOI: 10.24272/j.issn.2095-8137.2018.070]
  58. Zhou J, Liu Y, Shen T et al (2019) Enhancing the antibacterial activity of PMAP-37 by increasing its hydrophobicity. Chem Biol Drug Des 94:1986–1999. https://doi.org/10.1111/cbdd.13601 [DOI: 10.1111/cbdd.13601]
  59. Zhou X, Liu Y, Gao Y et al (2020) Enhanced antimicrobial activity of N-terminal derivatives of a novel brevinin-1 peptide from the skin secretion of odorrana schmackeri. Toxins 12:484. https://doi.org/10.3390/toxins12080484 [DOI: 10.3390/toxins12080484]
  60. Zhu S, Li W, O’Brien-Simpson N et al (2021) C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1. Amino Acids 53:769–777. https://doi.org/10.1007/s00726-021-02983-z [DOI: 10.1007/s00726-021-02983-z]

Grants

  1. 2019-18/Dumlupinar Üniversitesi

MeSH Term

Amino Acid Sequence
Amphibian Proteins
Animals
Anti-Bacterial Agents
Anti-Infective Agents
Gram-Positive Bacteria
Hemolysis
Microbial Sensitivity Tests
Ranidae
Skin
Staphylococcus aureus

Chemicals

Amphibian Proteins
Anti-Bacterial Agents
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0activityantimicrobialhemolyticpeptideskinpeptidesATCCfrogBR-1GHaGram-positivehighlowbacteriabrevinin-1GHanewanaloguesexaminedreplacedbacterialstrainsegENaturallyoccurringonelargestsourcesmanyadvantagesincludingpotencybroadspectrumtargetssusceptibilitymultipledrug-resistanceHoweveralsodisadvantagesstabilityproductioncostsreasonsvariousstrategiesappliedovercomedrawbacksrestrictinguseclinicaltrialsPreviouslyreported24aminoacidlongisolatedHylaranaguentherienhancereducedesignedfivetemporinlikebioactivitiesTemporinsanotherclasswithoutshorterbrevininsactivitiespanelmicroorganismsBR-1GHa-3twoalanineresiduestruncatedversionleucineexhibitedsignificantlyimprovedSaureus29213casseliflavus700327lowercomparedFurthermoreBR-1GHa-4analogueGly3Proshowexcepthighest128 µMconcentrationtestedstrongeffectfaecalis51299Bcereus13061DesignmodificationenhancedAntimicrobialFrogHemolyticSolid-phasesynthesisStructure–activityrelationships

Similar Articles

Cited By

No available data.