Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI-TOF mass spectrometry paired with machine learning.

Jade Pizzato, Wenhao Tang, Sandrine Bernabeu, Rémy A Bonnin, Emmanuelle Bille, Eric Farfour, Thomas Guillard, Olivier Barraud, Vincent Cattoir, Chloe Plouzeau, Stéphane Corvec, Vahid Shahrezaei, Laurent Dortet, Gerald Larrouy-Maumus
Author Information
  1. Jade Pizzato: Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, England.
  2. Wenhao Tang: Faculty of Natural Sciences, Department of Mathematics, Imperial College London, England.
  3. Sandrine Bernabeu: CHU de Bicêtre, Laboratoire de Bactériologie-Hygiène, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
  4. Rémy A Bonnin: INSERM UMR 1184, Team RESIST, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
  5. Emmanuelle Bille: Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, AP-HP Centre-Université de Paris, Paris, France.
  6. Eric Farfour: Service de Biologie Clinique, Hôpital Foch, Suresnes, France.
  7. Thomas Guillard: Université de Reims-Champagne-Ardenne, Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Laboratoire de Bactériologie-Virologie-Hygiène, Hospitalière-Parasitologie-Mycologie, Hôpital Robert Debré, CHU Reims, Reims, France.
  8. Olivier Barraud: CHU Limoges, Service de Bactériologie-Virologie-Hygiène, CIC1435, INSERM 1092, Université de Limoges, UMR, Limoges, France.
  9. Vincent Cattoir: Service de Bactériologie-Hygiène, CHU de Rennes, Rennes, France.
  10. Chloe Plouzeau: Service de Bactériologie et d'Hygiène hospitalière, Unité de microbiologie moléculaire et séquençage, CHU de Poitiers, Poitiers, France.
  11. Stéphane Corvec: Université de Nantes, CHU Nantes, Service de Bactériologie et des Contrôles Microbiologiques, INSERM, INCIT UMR 1302 F- 44000 Nantes, France.
  12. Vahid Shahrezaei: Faculty of Natural Sciences, Department of Mathematics, Imperial College London, England.
  13. Laurent Dortet: CHU de Bicêtre, Laboratoire de Bactériologie-Hygiène, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
  14. Gerald Larrouy-Maumus: Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, England. ORCID

Abstract

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a staple in clinical microbiology laboratories. Protein-profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein-based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI-TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild-acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in-house machine learning algorithm and top-ranked features used for the discrimination of the bacterial species. Here, as a proof-of-concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI-TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI-TOF MS analysis of lipids might help pave the way toward these goals.

Keywords

References

  1. Bioinformatics. 2015 Oct 1;31(19):3156-62 [PMID: 26026136]
  2. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10567-72 [PMID: 10954745]
  3. Rev Infect Dis. 1991 Mar-Apr;13 Suppl 4:S279-84 [PMID: 1710816]
  4. J Antimicrob Chemother. 2019 Sep 1;74(9):2544-2550 [PMID: 31199431]
  5. J Microbiol. 2005 Apr;43(2):133-43 [PMID: 15880088]
  6. J Clin Microbiol. 2013 Nov;51(11):3711-6 [PMID: 23985919]
  7. J Clin Microbiol. 2010 Nov;48(11):4140-6 [PMID: 20861334]
  8. BMC Infect Dis. 2019 Dec 9;19(1):1037 [PMID: 31818261]
  9. Front Microbiol. 2021 Aug 31;12:725383 [PMID: 34531843]
  10. BMC Infect Dis. 2021 Feb 16;21(1):181 [PMID: 33593278]
  11. J Clin Microbiol. 2016 Jun;54(6):1456-1461 [PMID: 26984974]
  12. Bull World Health Organ. 1999;77(8):651-66 [PMID: 10516787]
  13. Int J Med Microbiol. 2015 Jun-Aug;305(4-5):446-52 [PMID: 25912807]
  14. J Clin Microbiol. 2011 Nov;49(11):3766-70 [PMID: 21880974]
  15. Diagn Microbiol Infect Dis. 2016 Jun;85(2):255-9 [PMID: 27107537]
  16. Nat Rev Microbiol. 2004 Feb;2(2):123-40 [PMID: 15040260]
  17. Front Microbiol. 2020 Jun 03;11:1141 [PMID: 32582090]
  18. PLoS One. 2019 Jun 27;14(6):e0218951 [PMID: 31247021]
  19. PLoS One. 2012;7(9):e46095 [PMID: 23049947]
  20. J Antimicrob Chemother. 2018 Dec 1;73(12):3359-3367 [PMID: 30184212]
  21. Lett Appl Microbiol. 2017 Jan;64(1):8-18 [PMID: 27783408]
  22. J Clin Microbiol. 2004 May;42(5):2031-5 [PMID: 15131166]
  23. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4345-54 [PMID: 24167293]
  24. Cell Host Microbe. 2018 Dec 12;24(6):866-874.e4 [PMID: 30543779]
  25. J Clin Microbiol. 2021 Jan 21;59(2): [PMID: 33239379]
  26. Anal Chem. 1972 Sep 1;44(11):1906-9 [PMID: 22324618]
  27. BMC Bioinformatics. 2017 Mar 9;18(1):160 [PMID: 28274197]
  28. J Antimicrob Chemother. 2018 Sep 1;73(9):2352-2359 [PMID: 29897463]
  29. New Microbes New Infect. 2017 Sep 23;21:58-62 [PMID: 29204286]
  30. J Clin Microbiol. 2019 Nov 22;57(12): [PMID: 31597744]
  31. Rapid Commun Mass Spectrom. 2012 Sep 15;26(17):2011-20 [PMID: 22847700]
  32. Trends Microbiol. 2000 Jan;8(1):17-23 [PMID: 10637639]
  33. Microbiologyopen. 2022 Aug;11(4):e1313 [PMID: 36004556]
  34. Microorganisms. 2022 Feb 14;10(2): [PMID: 35208889]
  35. Lancet Infect Dis. 2018 Nov;18(11):1229-1240 [PMID: 30266330]
  36. Braz J Microbiol. 2021 Dec;52(4):2043-2055 [PMID: 34524650]
  37. Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1245-1250 [PMID: 32026192]
  38. J Antimicrob Chemother. 2020 Jan 1;75(1):110-116 [PMID: 31580426]

Grants

  1. MC_PC_18050/Medical Research Council
  2. 105603/Z/14/Z/Medical Research Council

MeSH Term

Bacteria
Escherichia coli
Escherichia coli Infections
Humans
Lipids
Machine Learning
RNA, Ribosomal, 16S
Shigella
Shigella flexneri
Shigella sonnei
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Chemicals

Lipids
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0ShigellausingcoliMALDI-TOFlipidprofilingMSEidentificationbacterialnegativeionmodemachinelearningspeciesMALDImassspectrometryclinicalwaydiscriminationEscherichiasppsequenceflexnerisonneiBiotyperSirius®systemfeaturesmightanalysislipidsMatrix-assistedlaserdesorption/ionization-timeflightbecomestaplemicrobiologylaboratoriesProtein-profilingbacteriatechniqueacceleratedpathogensdiagnosticworkflowsRecentlyemergedcomplementprotein-basedmethodsfailprovideaccurateresultsstudyaimedaddresschallengerapidcoupledcloselyrelatedsharehighhomologyreported16SrRNAgenesimilaritiesexceeding99%similarproteinexpressionpatternepidemiologicallydistinctcollection454862isolatessubmittedtreatmentmild-acidhydrolysisaceticacid1% v/v15 min98°CSpectraanalyzedin-housealgorithmtop-rankedusedproof-of-conceptshowedpotentialdifferentiatetopfiverankedobtainedBasednewapproachhelppavetowardgoalsDiscriminationpaired

Similar Articles

Cited By