Update on pathogenesis, management, and control of Plasmodium vivax.

Nazia Khan, Johanna P Daily
Author Information
  1. Nazia Khan: Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA.

Abstract

PURPOSE OF REVIEW: This is a review of Plasmodium vivax epidemiology, pathogenesis, disease presentation, treatment and innovations in control and elimination. Here, we examine the recent literature and summarize new advances and ongoing challenges in the management of P. vivax .
RECENT FINDINGS: P. vivax has a complex life cycle in the human host which impacts disease severity and treatment regimens. There is increasing data for the presence of cryptic reservoirs in the spleen and bone marrow which may contribute to chronic vivax infections and possibly disease severity. Methods to map the geospatial epidemiology of P. vivax chloroquine resistance are advancing, and they will inform local treatment guidelines. P. vivax treatment requires an 8-aminoquinoline to eradicate the dormant liver stage. Evidence suggests that higher doses of 8-aminoquinolines may be needed for radical cure of tropical frequent-relapsing strains.
SUMMARY: P. vivax is a significant global health problem. There have been recent developments in understanding the complexity of P. vivax biology and optimization of antimalarial therapy. Studies toward the development of best practices for P. vivax control and elimination programs are ongoing.

References

  1. WHO Guidelines for malaria, 18 February 2022. Geneva; 2022.
  2. World Malaria Report 2021. World Health Organization. Geneva: WHO; 2021.
  3. Battle KE, Baird JK. The global burden of Plasmodium vivax malaria is obscure and insidious. PLoS Med 2021; 18:e1003799.
  4. Malleret B, El Sahili A, Tay MZ, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol 2021; 6:991–999.
  5. Fernandez-Becerra C, Aparici-Herraiz I, Del Portillo HA. Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination. Parasitol Int 2022; 87:102527.
  6. Kho S, Qotrunnada L, Leonardo L, et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. PLoS Med 2021; 18:e1003632.
  7. Toda H, Diaz-Varela M, Segui-Barber J, et al. Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-κB facilitating parasite cytoadherence. Nat Commun 2020; 11:2761.
  8. Silva-Filho JL, Dos-Santos JC, Judice C, et al. Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients. Elife 2021; 10:e71351 pp 1-25.
  9. Koepfli C, Nguitragool W, de Almeida ACG, et al. Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLoS Negl Trop Dis 2021; 15:e0009672.
  10. Phyo AP, Dahal P, Mayxay M, Ashley EA. Clinical impact of vivax malaria: a collection review. PLoS Med 2022; 19:e1003890.
  11. Tovar-Acero C, Velasco MC, Aviles-Vergara PA, et al. Liver and kidney dysfunction, hypoglycemia, and thrombocytopenia in Plasmodium vivax malaria patients at a Colombian Northwest region. Parasite Epidemiol Control 2021; 13:e00203.
  12. Romero M, Leiba E, Carrion-Nessi FS, et al. Malaria in pregnancy complications in Southern Venezuela. Malar J 2021; 20:186.
  13. Dombrowski JG, Barateiro A, Peixoto EPM, et al. Adverse pregnancy outcomes are associated with Plasmodium vivax malaria in a prospective cohort of women from the Brazilian Amazon. PLoS Negl Trop Dis 2021; 15:e0009390.
  14. Pincelli A, Cardoso MA, Malta MB, et al. Group MI-BSW: low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: population-based birth cohort study in Amazonian Brazil. PLoS Negl Trop Dis 2021; 15:e0009568.
  15. Rosso F, Agudelo Rojas OL, Suarez Gil CC, et al. Transmission of malaria from donors to solid organ transplant recipients: a case report and literature review. Transpl Infect Dis 2021; 23:e13660.
  16. Chu CS, White NJ. The prevention and treatment of Plasmodium vivax malaria. PLoS Med 2021; 18:e1003561.
  17. Kavanaugh MJ, Azzam SE, Rockabrand DM. Malaria rapid diagnostic tests: literary review and recommendation for a quality assurance, quality control algorithm. Diagnostics (Basel) 2021; 11:768 pp 1–23.
  18. Agarwal R, Choi L, Johnson S, Takwoingi Y. Rapid diagnostic tests for Plasmodium vivax malaria in endemic countries. Cochrane Database Syst Rev 2020; 11:CD013218.
  19. Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax . Int J Parasitol Drugs Drug Resist 2021; 16:23–37.
  20. Rovira-Vallbona E, Van Hong N, Kattenberg JH, et al. High proportion of genome-wide homology and increased pretreatment pvcrt levels in Plasmodium vivax late recurrences: a chloroquine therapeutic efficacy study. Antimicrob Agents Chemother 2021; 65:e0009521.
  21. Wangdahl A, Sonden K, Wyss K, et al. Relapse of Plasmodium vivax and Plasmodium ovale malaria with and without primaquine treatment in a nonendemic area. Clin Infect Dis 2022; 74:1199–1207.
  22. White NJ. Antimalarial drug effects on parasite dynamics in vivax malaria. Malar J 2021; 20:161.
  23. Bancone G, Chu CS. G6PD variants and haemolytic sensitivity to primaquine and other drugs. Front Pharmacol 2021; 12:638885.
  24. Thriemer K, Ley B, von Seidlein L. Towards the elimination of Plasmodium vivax malaria: implementing the radical cure. PLoS Med 2021; 18:e1003494.
  25. Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax : insights from conventional and novel surveillance tools. PLoS Med 2021; 18:e1003560.
  26. Chamma-Siqueira NN, Negreiros SC, Ballard SB, et al. Higher-dose primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med 2022; 386:1244–1253.
  27. Shah MP, Hwang J, Choi L, et al. Mass drug administration for malaria. Cochrane Database Syst Rev 2021; 9:CD008846.
  28. Nekkab N, Lana R, Lacerda M, et al. Estimated impact of tafenoquine for Plasmodium vivax control and elimination in Brazil: a modelling study. PLoS Med 2021; 18:e1003535.
  29. Ley B, Winasti Satyagraha A, Kibria MG, et al. Repeatability and reproducibility of a handheld quantitative G6PD diagnostic. PLoS Negl Trop Dis 2022; 16:e0010174.
  30. Obaldia N, Barahona I, Lasso J, et al. Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Negl Trop Dis 2022; 16:e0010327.
  31. Gimenez AM, Salman AM, Marques RF, et al. A universal vaccine candidate against Plasmodium viva x malaria confers protective immunity against the three PvCSP alleles. Sci Rep 2021; 11:17928.

Grants

  1. R01 AI164864/NIAID NIH HHS
  2. R21 AI141367/NIAID NIH HHS
  3. R21 AI162007/NIAID NIH HHS

MeSH Term

Antimalarials
Chloroquine
Global Health
Humans
Malaria, Vivax
Plasmodium vivax

Chemicals

Antimalarials
Chloroquine

Word Cloud

Created with Highcharts 10.0.0vivaxPtreatmentdiseasecontrolPlasmodiumepidemiologypathogenesiseliminationrecentongoingmanagementseveritymayPURPOSEOFREVIEW:reviewpresentationinnovationsexamineliteraturesummarizenewadvanceschallengesRECENTFINDINGS:complexlifecyclehumanhostimpactsregimensincreasingdatapresencecrypticreservoirsspleenbonemarrowcontributechronicinfectionspossiblyMethodsmapgeospatialchloroquineresistanceadvancingwillinformlocalguidelinesrequires8-aminoquinolineeradicatedormantliverstageEvidencesuggestshigherdoses8-aminoquinolinesneededradicalcuretropicalfrequent-relapsingstrainsSUMMARY:significantglobalhealthproblemdevelopmentsunderstandingcomplexitybiologyoptimizationantimalarialtherapyStudiestowarddevelopmentbestpracticesprogramsUpdate

Similar Articles

Cited By