Reducing uncertainty in cancer risk estimation for patients with indeterminate pulmonary nodules using an integrated deep learning model.

Riqiang Gao, Thomas Li, Yucheng Tang, Kaiwen Xu, Mirza Khan, Michael Kammer, Sanja L Antic, Stephen Deppen, Yuankai Huo, Thomas A Lasko, Kim L Sandler, Fabien Maldonado, Bennett A Landman
Author Information
  1. Riqiang Gao: Vanderbilt University, Nashville, TN, 37235, USA. Electronic address: riqiang.gao@vanderbilt.edu.
  2. Thomas Li: Vanderbilt University, Nashville, TN, 37235, USA.
  3. Yucheng Tang: Vanderbilt University, Nashville, TN, 37235, USA.
  4. Kaiwen Xu: Vanderbilt University, Nashville, TN, 37235, USA.
  5. Mirza Khan: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  6. Michael Kammer: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  7. Sanja L Antic: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  8. Stephen Deppen: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  9. Yuankai Huo: Vanderbilt University, Nashville, TN, 37235, USA.
  10. Thomas A Lasko: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  11. Kim L Sandler: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  12. Fabien Maldonado: Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
  13. Bennett A Landman: Vanderbilt University, Nashville, TN, 37235, USA; Vanderbilt University Medical Center, Nashville, TN, 37235, USA.

Abstract

OBJECTIVE: Patients with indeterminate pulmonary nodules (IPN) with an intermediate to a high probability of lung cancer generally undergo invasive diagnostic procedures. Chest computed tomography image and clinical data have been in estimating the pretest probability of lung cancer. In this study, we apply a deep learning network to integrate multi-modal data from CT images and clinical data (including blood-based biomarkers) to improve lung cancer diagnosis. Our goal is to reduce uncertainty and to avoid morbidity, mortality, over- and undertreatment of patients with IPNs.
METHOD: We use a retrospective study design with cross-validation and external-validation from four different sites. We introduce a deep learning framework with a two-path structure to learn from CT images and clinical data. The proposed model can learn and predict with single modality if the multi-modal data is not complete. We use 1284 patients in the learning cohort for model development. Three external sites (with 155, 136 and 96 patients, respectively) provided patient data for external validation. We compare our model to widely applied clinical prediction models (Mayo and Brock models) and image-only methods (e.g., Liao et al. model).
RESULTS: Our co-learning model improves upon the performance of clinical-factor-only (Mayo and Brock models) and image-only (Liao et al.) models in both cross-validation of learning cohort (e.g.
, AUC: 0.787 (ours) vs. 0.707-0.719 (baselines), results reported in validation fold and external-validation using three datasets from University of Pittsburgh Medical Center (e.g., 0.918 (ours) vs. 0.828-0.886 (baselines)), Detection of Early Cancer Among Military Personnel (e.g., 0.712 (ours) vs. 0.576-0.709 (baselines)), and University of Colorado Denver (e.g., 0.847 (ours) vs. 0.679-0.746 (baselines)). In addition, our model achieves better re-classification performance (cNRI 0.04 to 0.20) in all cross- and external-validation sets compared to the Mayo model.
CONCLUSIONS: Lung cancer risk estimation in patients with IPNs can benefit from the co-learning of CT image and clinical data. Learning from more subjects, even though those only have a single modality, can improve the prediction accuracy. An integrated deep learning model can achieve reasonable discrimination and re-classification performance.

Keywords

References

  1. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  2. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  3. IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397 [PMID: 29994331]
  4. Med Decis Making. 2013 Feb;33(2):154-62 [PMID: 23042826]
  5. Med Image Anal. 2020 Oct;65:101785 [PMID: 32745977]
  6. Radiol Artif Intell. 2021 Oct 13;3(6):e210032 [PMID: 34870220]
  7. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  8. Curr Opin Pulm Med. 2021 Jul 1;27(4):240-248 [PMID: 33973553]
  9. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  10. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  11. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1595-604 [PMID: 26960999]
  12. Arch Intern Med. 1997 Apr 28;157(8):849-55 [PMID: 9129544]
  13. N Engl J Med. 2013 Feb 21;368(8):728-36 [PMID: 23425165]
  14. CA Cancer J Clin. 2018 Jan;68(1):7-30 [PMID: 29313949]
  15. Nat Med. 2019 Jun;25(6):954-961 [PMID: 31110349]
  16. Proc SPIE Int Soc Opt Eng. 2021 Feb;11596: [PMID: 34650321]
  17. CA Cancer J Clin. 2019 Jan;69(1):7-34 [PMID: 30620402]
  18. Chest. 2007 Sep;132(3 Suppl):108S-130S [PMID: 17873164]
  19. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  20. Radiology. 2011 Jan;258(1):243-53 [PMID: 21045183]
  21. Neurocomputing (Amst). 2020 Jul 15;397:48-59 [PMID: 32863584]
  22. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  23. Am J Respir Crit Care Med. 2012 Feb 15;185(4):363-72 [PMID: 21980032]
  24. IEEE Trans Med Imaging. 2016 May;35(5):1160-1169 [PMID: 26955024]
  25. Thorax. 2015 Aug;70(8):794-8 [PMID: 26135833]
  26. Inf Process Med Imaging. 2015;24:588-99 [PMID: 26221705]
  27. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3484-3495 [PMID: 30794190]
  28. Am J Respir Crit Care Med. 2020 Jul 15;202(2):241-249 [PMID: 32326730]
  29. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  30. IEEE Trans Biomed Eng. 2017 Jul;64(7):1558-1567 [PMID: 28113302]

Grants

  1. UL1 TR000445/NCATS NIH HHS
  2. R01 EB017230/NIBIB NIH HHS
  3. U01 CA152662/NCI NIH HHS
  4. R01 CA253923/NCI NIH HHS
  5. UL1 RR024975/NCRR NIH HHS
  6. U01 CA196405/NCI NIH HHS

MeSH Term

Humans
Deep Learning
Retrospective Studies
Uncertainty
Multiple Pulmonary Nodules
Lung Neoplasms

Word Cloud

Created with Highcharts 10.0.00modeldatalearningcancerclinicalpatientsegdeepCTcanmodelsvsbaselineslungexternal-validationMayoperformanceriskestimationindeterminatepulmonarynodulesprobabilityChestimagestudymulti-modalimagesimproveuncertaintyIPNsusecross-validationsiteslearnsinglemodalitycohortexternalvalidationpredictionBrockimage-onlyLiaoetalco-learningusingUniversityCancerre-classificationLungintegratedOBJECTIVE:PatientsIPNintermediatehighgenerallyundergoinvasivediagnosticprocedurescomputedtomographyestimatingpretestapplynetworkintegrateincludingblood-basedbiomarkersdiagnosisgoalreduceavoidmorbiditymortalityover-undertreatmentMETHOD:retrospectivedesignfourdifferentintroduceframeworktwo-pathstructureproposedpredictcomplete1284developmentThree15513696respectivelyprovidedpatientcomparewidelyappliedmethodsRESULTS:improvesuponclinical-factor-onlyAUC:787707-0719resultsreportedfoldthreedatasetsPittsburghMedicalCenter918828-0886DetectionEarlyAmongMilitaryPersonnel712576-0709ColoradoDenver847679-0746additionachievesbettercNRI0420cross-setscomparedCONCLUSIONS:benefitLearningsubjectseventhoughaccuracyachievereasonablediscriminationReducingClinicalfactorsDeep

Similar Articles

Cited By