Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space.

Ting Li, Huichen Zhu, Tengfei Li, Hongtu Zhu
Author Information
  1. Ting Li: School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China.
  2. Huichen Zhu: Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong. ORCID
  3. Tengfei Li: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  4. Hongtu Zhu: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ORCID

Abstract

Motivated by the analysis of longitudinal neuroimaging studies, we study the longitudinal functional linear regression model under asynchronous data setting for modeling the association between clinical outcomes and functional (or imaging) covariates. In the asynchronous data setting, both covariates and responses may be measured at irregular and mismatched time points, posing methodological challenges to existing statistical methods. We develop a kernel weighted loss function with roughness penalty to obtain the functional estimator and derive its representer theorem. The rate of convergence, a Bahadur representation, and the asymptotic pointwise distribution of the functional estimator are obtained under the reproducing kernel Hilbert space framework. We propose a penalized likelihood ratio test to test the nullity of the functional coefficient, derive its asymptotic distribution under the null hypothesis, and investigate the separation rate under the alternative hypotheses. Simulation studies are conducted to examine the finite-sample performance of the proposed procedure. We apply the proposed methods to the analysis of multitype data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, which reveals significant association between 21 regional brain volume density curves and the cognitive function. Data used in preparation of this paper were obtained from the ADNI database (adni.loni.usc.edu).

Keywords

References

  1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A. & Gee, J.C. (2011) A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage, 54(3), 2033-2044.
  2. Burhanullah, M.H., Tschanz, J.T., Peters, M.E., Leoutsakos, J.M., Matyi, J., Lyketsos, C.G., et al. (2020) Neuropsychiatric symptoms as risk factors for cognitive decline in clinically normal older adults: the cache county study. American Journal of Geriatric Psychiatry, 28(1), 64-71.
  3. Cao, H., Li, J. & Fine, J.P. (2016) On last observation carried forward and asynchronous longitudinal regression analysis. Electronic Journal of Statistics, 10(1), 1155-1180.
  4. Cao, H., Zeng, D. & Fine, J.P. (2015) Regression analysis of sparse asynchronous longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(4), 755-776.
  5. Chen, L. & Cao, H. (2017) Analysis of asynchronous longitudinal data with partially linear models. Electronic Journal of Statistics, 11(1), 1549-1569.
  6. de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J., Westendorp, R., Bollen, E., et al. (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study. Brain, 131(12), 3277-3285.
  7. Diggle, P. (2002) Analysis of longitudinal data. Oxford, England: Oxford University Press.
  8. Du, A.T., Schuff, N., Amend, D., Laakso, M.P., Hsu, Y., Jagust, W., et al. (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. Journal of Neurology, Neurosurgery & Psychiatry, 71(4), 441-447.
  9. Evans, M.C., Barnes, J., Nielsen, C., Kim, L.G., Clegg, S.L., Blair, M., et al. (2010) Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. European Radiology, 20(3), 674-682.
  10. Fan, J. & Li, R. (2004) New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association, 99(467), 710-723.
  11. Fjell, A., Amlien, I., Westlye, L. & Walhovd, K. (2009) Mini-mental state examination is sensitive to brain atrophy in Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 28(3), 252-258.
  12. Frisoni, G.B., Fox, N.C., Jack, C.R., Philip, S. & Thompson, P.M. (2010) The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67-77.
  13. Gertheiss, J., Goldsmith, J., Crainiceanu, C. & Greven, S. (2013) Longitudinal scalar-on-functions regression with application to tractography data. Biostatistics, 14(3), 447-461.
  14. Goldsmith, J., Crainiceanu, C.M., Caffo, B. & Reich, D. (2012) Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(3), 453-469.
  15. Gu, C. (2013) Smoothing spline ANOVA models. New York, NY: Springer Science & Business Media.
  16. Hall, P. & Horowitz, J.L. (2007) Methodology and convergence rates for functional linear regression. Annals of Statistics, 35(1), 70-91.
  17. Hilgert, N., Mas, A. & Verzelen, N. (2013) Minimax adaptive tests for the functional linear model. Annals of Statistics, 41(2), 838-869.
  18. Hu, J., Liu, F. & You, J. (2014) Panel data partially linear model with fixed effects, spatial autoregressive error components and unspecified intertemporal correlation. Journal of Multivariate Analysis, 130, 64-89.
  19. Imtiaz, B., Tolppanen, A.M., Kivipelto, M. & Soininen, H. (2014) Future directions in Alzheimer's disease from risk factors to prevention. Biochemical Pharmacology, 88(4), 661-670.
  20. Jiang, C.R. & Wang, J.L. (2011) Functional single index models for longitudinal data. Annals of Statistics, 39(1), 362-388.
  21. Klein, A. & Tourville, J. (2012) 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience, 6(6), 171.
  22. Li, T., Li, T., Zhu, Z. & Zhu, H. (2022) Regression analysis of asynchronous longitudinal functional and scalar data. Journal of the American Statistical Association, 117, 1228-1242.
  23. Li, T. & Zhu, Z. (2020) Inference for generalized partial functional linear regression. Statistica Sinica, 30(3), 1379-1397.
  24. Li, X., Li, Q., Zeng, D., Marder, K., Paulsen, J. & Wang, Y. (2020) Time-varying hazards model for incorporating irregularly measured, high-dimensional biomarkers. Statistica Sinica, 30(3), 1605-1632.
  25. Lin, D. & Ying, Z. (2001) Semiparametric and nonparametric regression analysis of longitudinal data. Journal of the American Statistical Association, 96(453), 103-126.
  26. Lin, D.Y., Wei, L.J., Yang, I. & Ying, Z. (2000) Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4), 711-730.
  27. Lin, X. & Carroll, R.J. (2001) Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association, 96(455), 1045-1056.
  28. Martinussen, T. & Scheike, T.H. (2006) Dynamic regression models for survival data. New York, NY: Springer.
  29. Petersen, A. & Müller, H.G. (2016) Functional data analysis for density functions by transformation to a Hilbert space. Annals of Statistics, 44(1), 183-218.
  30. Ramsay, J.O. & Silverman, B.W. (2005) Functional data analysis, 2nd edition. New York, NY: Springer.
  31. Reitz, C. & Mayeux, R. (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88(4), 640-651.
  32. Şentürk, D., Dalrymple, L.S., Mohammed, S.M., Kaysen, G.A. & Nguyen, D.V. (2013) Modeling time-varying effects with generalized and unsynchronized longitudinal data. Statistics in Medicine, 32(17), 2971-2987.
  33. Shang, Z. & Cheng, G. (2015) Nonparametric inference in generalized functional linear models. Annals of Statistics, 43(4), 1742-1773.
  34. Sun, D., Zhao, H. & Sun, J. (2021) Regression analysis of asynchronous longitudinal data with informative observation processes. Computational Statistics & Data Analysis, 157, 107161.
  35. Sun, Z., Cao, H. & Chen, L. (2022) Regression analysis of additive hazards model with sparse longitudinal covariates. Lifetime Data Analysis, 28(2), 263-281.
  36. Wahba, G. (1990) Spline models for observational data. Philadelphla, PA: Siam.
  37. Wang, H.J., Feng, X. & Dong, C. (2019) Copula-based quantile regression for longitudinal data. Statistica Sinica, 29(1), 245-264.
  38. Xie, J. & Kang, J. (2017) High-dimensional tests for functional networks of brain anatomic regions. Journal of Multivariate Analysis, 156, 70-88.
  39. Xiong, X. & Dubin, J.A. (2010) A binning method for analyzing mixed longitudinal data measured at distinct time points. Statistics in Medicine, 29(18), 1919-1931.
  40. Yao, F., Müller, H.G. & Wang, J.L. (2005) Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470), 577-590.
  41. Yuan, M. & Cai, T.T. (2010) A reproducing kernel Hilbert space approach to functional linear regression. Annals of Statistics, 38(6), 3412-3444.
  42. Zhao, B., Ibrahim, J.G., Li, Y., Li, T., Wang, Y., Shan, Y., et al. (2019) Heritability of regional brain volumes in large-scale neuroimaging and genetic studies. Cerebral Cortex, 29(7), 2904-2914.

MeSH Term

Humans
Linear Models
Alzheimer Disease
Computer Simulation
Algorithms
Likelihood Functions

Word Cloud

Created with Highcharts 10.0.0functionaldatalongitudinalkernelregressionasynchronousfunctionobtainedreproducingHilbertspacetestanalysisstudiesstudylinearsettingassociationcovariatesmethodslossestimatorderiverateBahadurrepresentationasymptoticdistributionpenalizedlikelihoodratioproposedADNIMotivatedneuroimagingmodelmodelingclinicaloutcomesimagingresponsesmaymeasuredirregularmismatchedtimepointsposingmethodologicalchallengesexistingstatisticaldevelopweightedroughnesspenaltyobtainrepresentertheoremconvergencepointwiseframeworkproposenullitycoefficientnullhypothesisinvestigateseparationalternativehypothesesSimulationconductedexaminefinite-sampleperformanceprocedureapplymultitypeAlzheimer'sDiseaseNeuroimagingInitiativerevealssignificant21regionalbrainvolumedensitycurvescognitiveDatausedpreparationpaperdatabaseadniloniusceduAsynchronousmodelskernel-weighted

Similar Articles

Cited By