Phenotypic and molecular responses of copepods to UV radiation stress in a clear versus a glacially turbid lake.

Barbara Tartarotti, Ruben Sommaruga, Nadine Saul
Author Information
  1. Barbara Tartarotti: Lake and Glacier Research Group Department of Ecology University of Innsbruck Innsbruck Austria. ORCID
  2. Ruben Sommaruga: Lake and Glacier Research Group Department of Ecology University of Innsbruck Innsbruck Austria. ORCID
  3. Nadine Saul: Molecular Genetics Group Institute of Biology Humboldt University of Berlin Berlin Germany.

Abstract

Zooplankton are exposed to multiple environmental stressors in alpine lakes. However, phenotypic and molecular responses of copepods to different environmental conditions, including ultraviolet radiation (UVR), are still not fully understood. Here, we tested whether gene expression patterns vary within the same species, , but in populations from different environments (a clear vs. a glacially turbid lake) when exposed to UVR. Moreover, we wanted to examine potential seasonal variation (summer vs. autumn) in copepod gene expression.We measured photoprotective compounds (mycosporine-like amino acids and carotenoids) and antioxidant capacities in two copepod populations and studied gene expression of heat shock proteins (s) as indicator of stress after UVR exposure in the laboratory.Compared with the copepod population from the clear lake, the population from the turbid lake showed lower mycosporine-like amino acid, but higher carotenoid concentrations that decreased over the season. Antioxidant capacities (both lipophilic and hydrophilic) were higher in autumn than in summer. The and genes were constitutively expressed, regardless of habitat origin and season, while was upregulated after exposure to UVR (up to 2.8-fold change). We observed stronger upregulation of gene expression in autumn for the turbid and summer for the clear lake, with highest gene expression 24���hr post-UVR exposure (up to 10.2-fold change in the turbid and 3.9-fold in the clear lake).We show how variation in phenotypic traits modulates gene expression patterns, specifically gene expression. Rapidly induced defences against cellular stress may improve survival in harsh environments such as alpine lakes, especially since these sensitive ecosystems may experience further changes in the future.

Keywords

References

  1. Biol Rev Camb Philos Soc. 1999 Aug;74(3):311-45 [PMID: 10466253]
  2. Environ Sci Process Impacts. 2013 Oct;15(10):1794-806 [PMID: 24056713]
  3. J Plankton Res. 2014 Mar;36(2):557-566 [PMID: 24616551]
  4. J Plankton Res. 2019 Nov;41(6):897-908 [PMID: 31920209]
  5. J Exp Biol. 2010 Mar 15;213(6):971-9 [PMID: 20190122]
  6. Crit Rev Toxicol. 1993;23(1):49-75 [PMID: 8471160]
  7. Limnol Oceanogr. 2009 Nov;54(6):2283-2297 [PMID: 20396409]
  8. Freshw Rev. 2010 Dec;3(2):105-131 [PMID: 21516254]
  9. Limnol Oceanogr. 2018 Jul;63(4):1579-1592 [PMID: 30333668]
  10. Nat Commun. 2020 Jun 25;11(1):3209 [PMID: 32587270]
  11. Aquat Toxicol. 2015 Aug;165:1-8 [PMID: 26001085]
  12. PLoS One. 2012;7(8):e43063 [PMID: 22916208]
  13. Photochem Photobiol Sci. 2009 Sep;8(9):1244-56 [PMID: 19707613]
  14. J Plankton Res. 2004 Jul;26(7):753-762 [PMID: 21258622]
  15. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  16. Comp Biochem Physiol A Mol Integr Physiol. 2017 Jan;203:348-358 [PMID: 27825870]
  17. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Jan;149(1):104-12 [PMID: 18722552]
  18. Proc Biol Sci. 2000 Nov 22;267(1459):2327-31 [PMID: 11413651]
  19. Luminescence. 1999 May-Jun;14(3):169-74 [PMID: 10423578]
  20. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  21. Appl Environ Microbiol. 1996 Dec;62(12):4395-400 [PMID: 16535460]
  22. Limnol Oceanogr. 2006 May;51(3):1530-1541 [PMID: 21258624]
  23. Sci Rep. 2017 Jul 3;7(1):4487 [PMID: 28674434]
  24. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jan;167:15-23 [PMID: 25152408]
  25. Freshw Biol. 2016 Nov;61(11):1950-1965 [PMID: 27840457]
  26. Mar Environ Res. 2012 May;76:22-31 [PMID: 22030210]
  27. Trends Ecol Evol. 1998 Feb 1;13(2):77-81 [PMID: 21238209]
  28. Freshw Biol. 2022 Aug;67(8):1456-1467 [PMID: 36249915]
  29. Annu Rev Physiol. 1999;61:243-82 [PMID: 10099689]
  30. Oecologia. 1986 Jun;69(3):334-340 [PMID: 28311333]
  31. J Photochem Photobiol B. 2001 Sep 1;62(1-2):35-42 [PMID: 11693365]

Word Cloud

Created with Highcharts 10.0.0geneexpressionlakeclearturbidUVRalpinelakessummerautumncopepodstressexposureexposedenvironmentalphenotypicmolecularresponsescopepodsdifferentradiationpatternspopulationsenvironmentsvsglaciallyvariationWemycosporine-likeaminocapacitiespopulationhigherseasonchangemayZooplanktonmultiplestressorsHoweverconditionsincludingultravioletstillfullyunderstoodtestedwhethervarywithinspeciesMoreoverwantedexaminepotentialseasonalmeasuredphotoprotectivecompoundsacidscarotenoidsantioxidanttwostudiedheatshockproteinssindicatorlaboratoryComparedshowedloweracidcarotenoidconcentrationsdecreasedAntioxidantlipophilichydrophilicgenesconstitutivelyexpressedregardlesshabitatoriginupregulated28-foldobservedstrongerupregulationhighest24���hrpost-UVR102-fold39-foldshowtraitsmodulatesspecificallyRapidlyinduceddefencescellularimprovesurvivalharshespeciallysincesensitiveecosystemsexperiencechangesfuturePhenotypicUVversusglacierretreathsp70photoprotectionzooplankton

Similar Articles

Cited By (1)