Estimating intervention effects on infectious disease control: The effect of community mobility reduction on Coronavirus spread.

Andrew Giffin, Wenlong Gong, Suman Majumder, Ana G Rappold, Brian J Reich, Shu Yang
Author Information
  1. Andrew Giffin: North Carolina State University, Department of Statistics, 2311 Stinson Drive, Raleigh, NC 27607, United States of America.
  2. Wenlong Gong: North Carolina State University, Department of Statistics, 2311 Stinson Drive, Raleigh, NC 27607, United States of America.
  3. Suman Majumder: Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States of America.
  4. Ana G Rappold: Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC 27514, United States of America.
  5. Brian J Reich: North Carolina State University, Department of Statistics, 2311 Stinson Drive, Raleigh, NC 27607, United States of America.
  6. Shu Yang: North Carolina State University, Department of Statistics, 2311 Stinson Drive, Raleigh, NC 27607, United States of America.

Abstract

Understanding the effects of interventions, such as restrictions on community and large group gatherings, is critical to controlling the spread of COVID-19. Susceptible-Infectious-Recovered (SIR) models are traditionally used to forecast the infection rates but do not provide insights into the causal effects of interventions. We propose a spatiotemporal model that estimates the causal effect of changes in community mobility (intervention) on infection rates. Using an approximation to the SIR model and incorporating spatiotemporal dependence, the proposed model estimates a direct and indirect (spillover) effect of intervention. Under an interference and treatment ignorability assumption, this model is able to estimate causal intervention effects, and additionally allows for spatial interference between locations. Reductions in community mobility were measured by cell phone movement data. The results suggest that the reductions in mobility decrease Coronavirus cases 4 to 7 weeks after the intervention.

Keywords

References

  1. Bull Math Biol. 2003 Jan;65(1):1-26 [PMID: 12597114]
  2. Epidemiology. 1991 Sep;2(5):331-8 [PMID: 1742381]
  3. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148655]
  4. Sci Rep. 2021 Jul 6;11(1):13939 [PMID: 34230582]
  5. Int Stat Rev. 2021 Dec;89(3):605-634 [PMID: 37197445]
  6. JAMA. 2020 Apr 14;323(14):1335 [PMID: 32181795]
  7. J Theor Biol. 2015 Jun 7;374:152-64 [PMID: 25791283]
  8. J Theor Biol. 2012 Jan 21;293:131-42 [PMID: 22033506]
  9. J Theor Biol. 2004 Jul 21;229(2):249-61 [PMID: 15207479]
  10. J Math Biol. 1994;32(5):453-63 [PMID: 8035136]
  11. Spat Stat. 2022 Dec;52:100711 [PMID: 36284923]
  12. Math Biosci Eng. 2016 Feb;13(1):43-65 [PMID: 26776260]
  13. Math Biosci. 1995 Jul-Aug;128(1-2):71-91 [PMID: 7606146]
  14. Health Aff (Millwood). 2020 Aug;39(8):1419-1425 [PMID: 32543923]
  15. Lancet Public Health. 2020 May;5(5):e261-e270 [PMID: 32220655]
  16. J Theor Biol. 2012 Mar 21;297:116-26 [PMID: 22207025]
  17. Int J Environ Res Public Health. 2021 May 27;18(11): [PMID: 34071801]
  18. J Theor Biol. 2015 Sep 7;380:60-73 [PMID: 25981631]
  19. Health Place. 2021 May;69:102563 [PMID: 33799134]
  20. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  21. Nature. 2021 Jan;589(7840):82-87 [PMID: 33171481]
  22. PLoS One. 2020 Aug 5;15(8):e0237126 [PMID: 32756608]
  23. J Math Biol. 2017 Jun;74(7):1709-1727 [PMID: 27796478]
  24. Nat Commun. 2021 Feb 17;12(1):1090 [PMID: 33597546]
  25. Lancet Public Health. 2020 May;5(5):e279-e288 [PMID: 32311320]
  26. J Air Waste Manag Assoc. 2012 Sep;62(9):1022-31 [PMID: 23019816]
  27. Math Biosci. 2018 Jul;301:111-120 [PMID: 29471011]
  28. PLoS One. 2020 Nov 24;15(11):e0242761 [PMID: 33232385]
  29. Biometrics. 2023 Sep;79(3):2220-2231 [PMID: 35996756]
  30. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  31. J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):138-44 [PMID: 24896768]
  32. Math Biosci. 2007 Mar;206(1):61-80 [PMID: 16387332]

Grants

  1. R01 ES031651/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0modelinterventioneffectscommunitymobilitySIRcausaleffectinterventionsspreadCOVID-19infectionratesspatiotemporalestimatesinterferenceCoronavirusUnderstandingrestrictionslargegroupgatheringscriticalcontrollingSusceptible-Infectious-RecoveredmodelstraditionallyusedforecastprovideinsightsproposechangesUsingapproximationincorporatingdependenceproposeddirectindirectspillovertreatmentignorabilityassumptionableestimateadditionallyallowsspatiallocationsReductionsmeasuredcellphonemovementdataresultssuggestreductionsdecreasecases47weeksEstimatinginfectiousdiseasecontrol:reductionCausalinferenceSpatiotemporalmodeling

Similar Articles

Cited By (1)