Formation and evolution of C-C, C-O, C[double bond, length as m-dash]O and C-N bonds in chemical reactions of prebiotic interest.

Alejandro Arias, Sara Gómez, Natalia Rojas-Valencia, Francisco Núñez-Zarur, Chiara Cappelli, Juliana A Murillo-López, Albeiro Restrepo
Author Information
  1. Alejandro Arias: Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia albeiro.restrepo@udea.edu.co. ORCID
  2. Sara Gómez: Scuola Normale Superiore, Classe di Scienze Piazza dei Cavalieri 7 Pisa 56126 Italy sara.gomezmaya@sns.it. ORCID
  3. Natalia Rojas-Valencia: Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia albeiro.restrepo@udea.edu.co. ORCID
  4. Francisco Núñez-Zarur: Facultad de Ciencias Básicas, Universidad de Medellín Carrera 87 No. 30-65 Medellín 050026 Colombia. ORCID
  5. Chiara Cappelli: Scuola Normale Superiore, Classe di Scienze Piazza dei Cavalieri 7 Pisa 56126 Italy sara.gomezmaya@sns.it. ORCID
  6. Juliana A Murillo-López: Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello Autopista, Concepción-Talcahuano Talcahuano 7100 Chile. ORCID
  7. Albeiro Restrepo: Instituto de Química, Universidad de Antioquia UdeA Calle 70 No. 52-21 Medellín Colombia albeiro.restrepo@udea.edu.co. ORCID

Abstract

A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C-C, C-O, C[double bond, length as m-dash]O, and C-N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O-H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C-N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.

References

  1. Phys Chem Chem Phys. 2015 Dec 21;17(47):31917-30 [PMID: 26568481]
  2. Chemistry. 2018 Apr 3;24(19):4885-4894 [PMID: 29369429]
  3. Philos Trans R Soc Lond B Biol Sci. 2006 Oct 29;361(1474):1733-41; discussion 1741-2 [PMID: 17008214]
  4. Phys Chem Chem Phys. 2010;12(20):5285-94 [PMID: 20358044]
  5. Chem Sci. 2021 Jun 15;12(26):9233-9245 [PMID: 34276953]
  6. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4105-4110 [PMID: 29610313]
  7. Science. 1986 Dec 12;234:1383-5 [PMID: 11539665]
  8. Orig Life. 1974 Jan-Apr;5(1):153-7 [PMID: 4366907]
  9. J Am Chem Soc. 1984;106(26):8007-13 [PMID: 11541992]
  10. Life (Basel). 2019 Jan 17;9(1): [PMID: 30658501]
  11. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):E342 [PMID: 25572968]
  12. Chemphyschem. 2016 Jul 4;17(13):2022-34 [PMID: 26990819]
  13. Trends Genet. 2017 Oct;33(10):665-676 [PMID: 28870653]
  14. Naturwissenschaften. 2009 Nov;96(11):1265-92 [PMID: 19760276]
  15. Orig Life. 1982 Mar;12(1):9-40 [PMID: 7133673]
  16. ACS Cent Sci. 2019 Sep 25;5(9):1532-1540 [PMID: 31572780]
  17. Orig Life. 1984;14(1-4):91-8 [PMID: 6087243]
  18. Chem Soc Rev. 2013 Mar 7;42(5):2186-96 [PMID: 23340907]
  19. Nature. 1993 Oct 14;365:630-3 [PMID: 11540245]
  20. Phys Chem Chem Phys. 2021 Jul 14;23(27):14857-14872 [PMID: 34223573]
  21. Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2870-7 [PMID: 21930577]
  22. Proc Natl Acad Sci U S A. 1994 Feb;91:1248-50 [PMID: 11539550]
  23. Sci Rep. 2017 Jul 24;7(1):6275 [PMID: 28740207]
  24. Angew Chem Int Ed Engl. 2016 Jan 4;55(1):104-21 [PMID: 26510485]
  25. J Phys Chem A. 2020 Nov 12;124(45):9413-9426 [PMID: 33135896]
  26. J Chem Phys. 2017 Jul 28;147(4):044312 [PMID: 28764334]
  27. Chemphyschem. 2021 Dec 3;22(23):2401-2412 [PMID: 34554628]
  28. J Org Chem. 2019 Nov 15;84(22):14644-14658 [PMID: 31625741]
  29. Molecules. 2020 Jan 10;25(2): [PMID: 31936766]
  30. Phys Life Rev. 2020 Dec;34-35:105-135 [PMID: 30243920]
  31. Tetrahedron. 1984;40(7):1093-120 [PMID: 11541961]
  32. Biol Direct. 2018 Sep 21;13(1):18 [PMID: 30241560]
  33. Chem Soc Rev. 2012 Aug 21;41(16):5430-46 [PMID: 22677708]
  34. Chemistry. 2005 Nov 4;11(22):6743-53 [PMID: 16130156]
  35. Phys Chem Chem Phys. 2020 Jun 17;22(23):13049-13061 [PMID: 32478372]
  36. Nature. 1986 Jan 23;319:305-8 [PMID: 11540884]
  37. J Chem Phys. 2004 Sep 8;121(10):4570-6 [PMID: 15332887]
  38. Science. 1979 Mar 9;203(4384):1002-4 [PMID: 17811121]
  39. J Phys Chem A. 2008 Nov 20;112(46):11801-7 [PMID: 18942822]
  40. iScience. 2020 Nov 01;23(11):101756 [PMID: 33241201]
  41. Biosystems. 1982;15(3):191-3 [PMID: 6291673]
  42. Chem Soc Rev. 2012 Aug 21;41(16):5404-15 [PMID: 22660387]
  43. J Phys Chem A. 2013 Mar 7;117(9):1991-9 [PMID: 23398173]
  44. Cold Spring Harb Perspect Biol. 2012 Jul 01;4(7):a006742 [PMID: 21441585]
  45. Cell. 1996 Jun 14;85(6):793-8 [PMID: 8681375]
  46. Phys Chem Chem Phys. 2016 Oct 26;18(42):29278-29285 [PMID: 27731439]
  47. Trends Biochem Sci. 1998 Dec;23(12):491-5 [PMID: 9868373]
  48. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  49. Crit Rev Biochem Mol Biol. 2004 Mar-Apr;39(2):99-123 [PMID: 15217990]
  50. Chem Rev. 2011 Apr 13;111(4):2597-625 [PMID: 21322583]
  51. Acc Chem Res. 2017 Mar 21;50(3):455-459 [PMID: 28945387]

Word Cloud

Created with Highcharts 10.0.0reactionsbondsformationprebioticwaterbondC-NprotonchemicalevolutionC-CC-OC[doublelengthm-dash]OmoleculescasescarbonprocessesdoubletransferaroundoccurseriesyieldingprecursorbuildingblocksaminoacidsproteinscarbohydratesstartingsolelyHCNstudiedcloselyfollowpivotaldictatechemistrylifemanysetmotiontransfersindividualactcatalystsatomsendproductsresultsindicatedioxideformaldehydeformicacidformaldimineglycolaldehydeglycineglycolonitrileoxazolederivativesamongothersbestdescribedhighlynonsynchronousconcertedsinglestepNonethelessinvolvingbreakingO-HparticularOatomsynchronousfashionapparentlyindependentlyprimitivepartfirstprocessinitiateseemspresentbreaking/formationreactivecarbonylgroupfinallyruptureappropriatereluctantbreakRemarkablywithinlimitationsnon-dynamicalcomputationalmodelwiderangestemperaturepressuredownplayproblematicdeterminationexactconstraintsearlyEarthFormationinterest

Similar Articles

Cited By