Evaluation of candidate reference genes stability for gene expression analysis by reverse transcription qPCR in Clostridium perfringens.

Michele L Williams, Mostafa Ghanem
Author Information
  1. Michele L Williams: Department of Veterinary Medicine, University of Maryland, College Park, MD, USA.
  2. Mostafa Ghanem: Department of Veterinary Medicine, University of Maryland, College Park, MD, USA. mghanem@umd.edu.

Abstract

Identification of stable reference genes for normalization purposes is necessary for obtaining reliable and accurate results of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses. To our knowledge, no reference gene(s) have been validated for this purpose in Clostridium perfringens. In this study, the expression profile of ten candidate reference genes from three strains of C. perfringens were assessed for stability under various experimental conditions using geNorm in qbase + . These stability rankings were then compared to stability assessments evaluated by BestKeeper, NormFinder, delta Ct, and RefFinder algorithms. When comparing all the analyses; gyrA, ftsZ, and recA were identified within the most stable genes under the different experimental conditions and were further tested as a set of reference genes for normalization of alpha toxin gene expression over a 22-h period. Depending on the condition, rpoA and rho might also be suitable to include as part of the reference set. Although commonly used for the purpose of normalizing RT-qPCR data, the 16S rRNA gene (rrs) was found to be an unsuitable gene to be used as a reference. This work provides a framework for the selection of a suitable stable reference gene set for data normalization of C. perfringens gene expression.

References

  1. FEMS Microbiol Lett. 1995 Aug 15;131(1):99-105 [PMID: 7557317]
  2. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  3. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  4. Methods Mol Biol. 2014;1160:19-26 [PMID: 24740218]
  5. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  6. Antonie Van Leeuwenhoek. 2015 Sep;108(3):685-93 [PMID: 26149127]
  7. Anaerobe. 2018 Oct;53:5-10 [PMID: 29866424]
  8. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  9. J Bacteriol. 2009 Jun;191(12):3919-27 [PMID: 19363118]
  10. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  11. PLoS One. 2015 May 15;10(5):e0127036 [PMID: 25978838]
  12. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  13. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  14. J Biosci Bioeng. 2013 Oct;116(4):460-4 [PMID: 23651807]
  15. Microbiology (Reading). 2018 May;164(5):835-847 [PMID: 29624163]
  16. Anaerobe. 2019 Oct;59:61-67 [PMID: 31125604]
  17. J Microbiol Methods. 2011 Aug;86(2):210-7 [PMID: 21620905]
  18. PLoS Pathog. 2008 Feb 8;4(2):e26 [PMID: 18266469]
  19. Infect Immun. 2017 May 23;85(6): [PMID: 28373356]
  20. Sci Rep. 2018 Jun 13;8(1):9001 [PMID: 29899556]
  21. Anaerobe. 2014 Dec;30:199-204 [PMID: 25152227]
  22. Anaerobe. 2014 Apr;26:14-9 [PMID: 24389585]
  23. Genome Biol. 2007;8(2):R19 [PMID: 17291332]
  24. Appl Environ Microbiol. 2009 Apr;75(7):1961-9 [PMID: 19201979]
  25. Vet Microbiol. 2009 Oct 20;139(1-2):202-6 [PMID: 19559545]
  26. J Gen Microbiol. 1976 Sep;96(1):137-44 [PMID: 10344]
  27. Microbiol Spectr. 2019 Nov;7(6): [PMID: 31858953]
  28. Methods Mol Biol. 2018;1734:23-32 [PMID: 29288443]
  29. Anaerobe. 2010 Aug;16(4):439-43 [PMID: 20599622]
  30. Biotechniques. 2008 Apr;44(5):619-26 [PMID: 18474036]
  31. Infect Immun. 2012 Sep;80(9):3008-17 [PMID: 22689820]
  32. J Food Prot. 1998 Sep;61(9):1143-7 [PMID: 9766065]
  33. Microbiol Immunol. 2002;46(5):353-8 [PMID: 12139395]
  34. Bioinformatics. 2007 May 15;23(10):1289-91 [PMID: 17379693]
  35. Future Microbiol. 2014;9(3):361-77 [PMID: 24762309]

MeSH Term

Reference Standards
Clostridium perfringens
Reverse Transcription
Gene Expression Profiling
RNA, Ribosomal, 16S
Real-Time Polymerase Chain Reaction

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Similar Articles

Cited By