Deep learning on multi-view sequential data: a survey.

Zhuyang Xie, Yan Yang, Yiling Zhang, Jie Wang, Shengdong Du
Author Information
  1. Zhuyang Xie: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756 China.
  2. Yan Yang: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756 China.
  3. Yiling Zhang: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756 China.
  4. Jie Wang: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756 China.
  5. Shengdong Du: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756 China.

Abstract

With the progress of human daily interaction activities and the development of industrial society, a large amount of media data and sensor data become accessible. Humans collect these multi-source data in chronological order, called multi-view sequential data (MvSD). MvSD has numerous potential application domains, including intelligent transportation, climate science, health care, public safety and multimedia, etc. However, as the volume and scale of MvSD increases, the traditional machine learning methods become difficult to withstand such large-scale data, and it is no longer appropriate to use hand-craft features to represent these complex data. In addition, there is no general framework in the process of mining multi-view relationships and integrating multi-view information. In this paper, We first introduce four common data types that constitute MvSD, including point data, sequence data, graph data, and raster data. Then, we summarize the technical challenges of MvSD. Subsequently, we review the recent progress in deep learning technology applied to MvSD. Meanwhile, we discuss how the network represents and learns features of MvSD. Finally, we summarize the applications of MvSD in different domains and give potential research directions.

Keywords

References

  1. IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2371-2381 [PMID: 27448371]
  2. J Biomed Inform. 2020 Oct;110:103547 [PMID: 32860883]
  3. J Am Med Inform Assoc. 2018 Oct 1;25(10):1351-1358 [PMID: 29860441]
  4. Sensors (Basel). 2020 Jan 11;20(2): [PMID: 31940830]
  5. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1977-1986 [PMID: 34487495]
  6. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  7. IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):1998-2008 [PMID: 28678710]
  8. Proc AAAI Conf Artif Intell. 2019 Jul;33(1):7216-7223 [PMID: 32219010]
  9. BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):586 [PMID: 31787093]
  10. Proc Conf Assoc Comput Linguist Meet. 2020 Jul;2020:2359-2369 [PMID: 33782629]
  11. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:641-644 [PMID: 33018069]
  12. IEEE Trans Biomed Eng. 2022 Aug;69(8):2456-2467 [PMID: 35100107]
  13. IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495 [PMID: 28060704]
  14. IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2402-2415 [PMID: 33180720]
  15. Neural Netw. 2022 Jan;145:1-9 [PMID: 34710786]
  16. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  17. IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):1242-1253 [PMID: 33326385]
  18. IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2875-2885 [PMID: 32701454]
  19. IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4453-4468 [PMID: 32750782]
  20. IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2551-2566 [PMID: 35503823]
  21. Proc Conf Assoc Comput Linguist Meet. 2018 Jul;2018:2225-2235 [PMID: 30505068]
  22. IEEE Trans Image Process. 2021;30:305-317 [PMID: 33186106]
  23. Front Digit Health. 2022 Jul 07;4:789980 [PMID: 35873349]
  24. IEEE Trans Neural Syst Rehabil Eng. 2019 Mar;27(3):400-410 [PMID: 30716040]
  25. IEEE Trans Biomed Eng. 2000 Sep;47(9):1185-94 [PMID: 11008419]
  26. IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2682-2696 [PMID: 32078533]
  27. Proc Conf Assoc Comput Linguist Meet. 2019 Jul;2019:6558-6569 [PMID: 32362720]
  28. IEEE Trans Biomed Eng. 2023 Sep;70(9):2508-2518 [PMID: 37028083]
  29. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1441-1451 [PMID: 34288872]
  30. IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423-443 [PMID: 29994351]
  31. BMJ Innov. 2021 Apr;7(2):356-362 [PMID: 34192022]
  32. IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5903-5915 [PMID: 33788679]
  33. Proc AAAI Conf Artif Intell. 2018 Feb;2018:5642-5649 [PMID: 32257595]
  34. IEEE J Biomed Health Inform. 2021 Apr;25(4):1305-1314 [PMID: 32960771]
  35. IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3442-3455 [PMID: 31670682]

Word Cloud

Created with Highcharts 10.0.0dataMvSDmulti-viewlearningprogressbecomesequentialpotentialdomainsincludingfeaturessummarizeDeephumandailyinteractionactivitiesdevelopmentindustrialsocietylargeamountmediasensoraccessibleHumanscollectmulti-sourcechronologicalordercallednumerousapplicationintelligenttransportationclimatesciencehealthcarepublicsafetymultimediaetcHowevervolumescaleincreasestraditionalmachinemethodsdifficultwithstandlarge-scalelongerappropriateusehand-craftrepresentcomplexadditiongeneralframeworkprocessminingrelationshipsintegratinginformationpaperfirstintroducefourcommontypesconstitutepointsequencegraphrastertechnicalchallengesSubsequentlyreviewrecentdeeptechnologyappliedMeanwhilediscussnetworkrepresentslearnsFinallyapplicationsdifferentgiveresearchdirectionsdata:surveyneuralnetworksMulti-viewSequentialSpatio-temporal

Similar Articles

Cited By

No available data.