A highquality genome assembly and annotation of Carruth.

Dan Liu, Xiaoman Xie, Boqiang Tong, Chengcheng Zhou, Kai Qu, Haili Guo, Zhiheng Zhao, Yousry A El-Kassaby, Wei Li, Wenqing Li
Author Information
  1. Dan Liu: National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  2. Xiaoman Xie: Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China.
  3. Boqiang Tong: Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China.
  4. Chengcheng Zhou: National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  5. Kai Qu: National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  6. Haili Guo: Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China.
  7. Zhiheng Zhao: National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  8. Yousry A El-Kassaby: Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada.
  9. Wei Li: National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  10. Wenqing Li: Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China.

Abstract

Introduction: is an economic and ecological tree species often used for afforestation of arid and semi-arid lands and is considered as an excellent tree for soil and water conservation.
Methods: Here, we combined PacBio long reads, Hi-C, and Illumina short reads to assemble genome.
Results: We generated a 957.1 Mb genome with a contig N50 of 1.2 Mb and scaffold N50 of 77.0 Mb. The repetitive sequences constituted 55.63% of the genome, among which long terminal repeats were the majority and accounted for 23.07% of the genome. , homology-based and RNA sequence-based gene prediction identified 29,889 protein-coding genes, of which 82.6% could be functionally annotated. Phylogenetic analysis showed that and were differentiated around 3.6 million years ago, and showed no evidence of species-specific whole genome duplication.
Conclusion: The assembled and annotated high-quality genome not only promises to accelerate the species molecular biology studies and breeding, but also promotes genome level evolutionary studies.

Keywords

References

  1. New Phytol. 2018 Jan;217(1):439-452 [PMID: 28921530]
  2. G3 (Bethesda). 2021 Aug 7;11(8): [PMID: 34021320]
  3. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  4. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  5. J Environ Manage. 2019 Sep 15;246:150-156 [PMID: 31176179]
  6. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12 [PMID: 15215400]
  7. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  8. Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811 [PMID: 30395283]
  9. G3 (Bethesda). 2016 Nov 8;6(11):3485-3495 [PMID: 27621377]
  10. Gigascience. 2018 Jun 1;7(6): [PMID: 29893845]
  11. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  12. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10 [PMID: 19274634]
  13. Sci Data. 2018 May 22;5:180069 [PMID: 29786699]
  14. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  15. Bioinformatics. 2003 Jan 22;19(2):301-2 [PMID: 12538260]
  16. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  17. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  18. Mol Biol Evol. 2021 Dec 9;38(12):5825-5829 [PMID: 34597405]
  19. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  20. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  21. Bioinformatics. 2011 Sep 1;27(17):2325-9 [PMID: 21697122]
  22. Cytogenet Genome Res. 2005;110(1-4):462-7 [PMID: 16093699]
  23. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  24. Ying Yong Sheng Tai Xue Bao. 2009 Aug;20(8):1817-24 [PMID: 19947197]
  25. Hortic Res. 2020 May 2;7(1):73 [PMID: 32377363]
  26. Hortic Res. 2020 Jun 1;7(1):95 [PMID: 32528707]
  27. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  28. Ecol Evol. 2021 Aug 30;11(19):13401-13414 [PMID: 34646478]
  29. Genome Biol Evol. 2013;5(5):954-65 [PMID: 23426643]
  30. Nat Ecol Evol. 2022 Jul;6(7):924-935 [PMID: 35513577]
  31. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  32. Mol Phylogenet Evol. 2018 Feb;119:170-181 [PMID: 29175095]
  33. PeerJ. 2016 Apr 21;4:e1897 [PMID: 27123376]
  34. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  35. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  36. Gigascience. 2017 Feb 1;6(2):1-13 [PMID: 28369459]
  37. Int J Mol Sci. 2018 Aug 18;19(8): [PMID: 30126202]
  38. Mol Ecol Resour. 2016 Jan;16(1):254-65 [PMID: 25944057]
  39. Hortic Res. 2020 Apr 1;7:45 [PMID: 32257231]
  40. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  41. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  42. Int J Biol Macromol. 2020 Jun 1;152:340-348 [PMID: 32109476]
  43. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  44. Plant Cell. 2004 Jul;16(7):1667-78 [PMID: 15208399]
  45. Mol Biol Rep. 2013 Jun;40(6):4083-90 [PMID: 23459930]
  46. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  47. Nat Genet. 2009 Dec;41(12):1275-81 [PMID: 19881527]
  48. Genome Res. 2008 Dec;18(12):1979-90 [PMID: 18757608]
  49. Plant J. 2019 Feb;97(4):779-794 [PMID: 30427081]
  50. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  51. Nat Methods. 2020 Feb;17(2):155-158 [PMID: 31819265]
  52. Hortic Res. 2021 Jun 1;8(1):135 [PMID: 34059651]
  53. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  54. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  55. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  56. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  57. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 [PMID: 30407594]
  58. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  59. Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
  60. Hortic Res. 2020 Apr 1;7(1):46 [PMID: 32257232]

Word Cloud

Created with Highcharts 10.0.0genomeMbgenetreespecieslongreads1N50annotatedanalysisshowedstudiesassemblyannotationIntroduction:economicecologicaloftenusedafforestationaridsemi-aridlandsconsideredexcellentsoilwaterconservationMethods:combinedPacBioHi-CIlluminashortassembleResults:generated957contig2scaffold770repetitivesequencesconstituted5563%amongterminalrepeatsmajorityaccounted2307%homology-basedRNAsequence-basedpredictionidentified29889protein-codinggenes826%functionallyPhylogeneticdifferentiatedaround36millionyearsagoevidencespecies-specificwholeduplicationConclusion:assembledhigh-qualitypromisesacceleratemolecularbiologybreedingalsopromoteslevelevolutionaryhighqualityCarruthQuercusacutissimafamiliesphylogenetic

Similar Articles

Cited By