Age-dependent viscoelastic characterization of rat brain cortex.

Bo Xue, Xuejun Wen, Ram Kuwar, Dong Sun, Ning Zhang
Author Information
  1. Bo Xue: Institute for Engineering and Medicine, Department of Chemical and Life Science, Engineering, Virginia Commonwealth University, 601 West Main Street, Room, 403, Richmond, Virginia 23284, USA.
  2. Xuejun Wen: Institute for Engineering and Medicine, Department of Chemical and Life Science, Engineering, Virginia Commonwealth University, 601 West Main Street, Room, 403, Richmond, Virginia 23284, USA, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China.
  3. Ram Kuwar: Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA.
  4. Dong Sun: Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA.
  5. Ning Zhang: Department of Biomedical Engineering, Virginia Commonwealth University, Engineering West Hall, Room 444, 601 West Main Street, Richmond, Virginia 23284, USA.

Abstract

Recent efforts in biomaterial-assisted brain tissue engineering suggest that match of mechanical properties of biomaterials to those of native brain tissue may be crucial for brain regeneration. In particular, the mechanical properties of native brain tissue vary as a function of age. To date, detailed characterization of age-dependent viscoelastic properties of brain tissue throughout the postnatal development to adulthood is only available at sparse age points in animal studies. To fill this gap, we have characterized the linear viscoelastic properties of the cerebral cortex in rats at well-spaced ages from postnatal day 4 to 4 months old, the age range that is widely used in neural regeneration studies. Using an oscillatory rheometer, the viscoelastic properties of rat cortical slices were measured independently by storage moduli (G') and loss moduli (G″). The data demonstrated increases in both the storage moduli and the loss moduli of cortex tissue over post-natal age in rats. At all ages, the damping factor (G″/G' ratio) remained constant at low oscillatory strain frequencies (<10 rad/s) before it started to decline at medium frequency range (10-100 rad/s). Such changes were not age-dependent. The stress-relaxation response increased over post-natal age, consistent with the increasing tissue stiffness. Taken together, our study demonstrates that age is a crucial factor determining the mechanical properties of the cerebral cortex in rats during early postnatal development. This data may provide the guidelines for age-specific biomechanics study of brain tissue and help to define the mechanical properties of biomaterials for biomaterial-assisted brain tissue regeneration studies.
Statement of significance: Studies about age-dependent viscoelastic properties of rat brain tissue throughout the postnatal development to adulthood is sparsely available. To fill up the gap of knowledge, in this study, we have characterized the age-dependent viscoelastic properties and the linear viscoelastic properties of the cerebral cortex throughout the postnatal development stage to adulthood in rats by measuring storage moduli (G'), loss moduli (G″), damping factor (G″/G' ratio) and stress-relaxation response. We have found that age is a crucial factor determining the mechanical properties of the cerebral cortex in rats during early postnatal development. The findings of this study could provide guidelines for age-specific biomechanical study of brain tissue and help to define the mechanical properties of biomaterials for biomaterial-assisted brain tissue regeneration in experimental models in rats.

Keywords

References

  1. Eur Spine J. 2008 Dec;17 Suppl 4:467-79 [PMID: 19005702]
  2. Biophys J. 2020 Nov 3;119(9):1712-1723 [PMID: 33086042]
  3. J Physiol. 1996 Nov 1;496 ( Pt 3):827-36 [PMID: 8930847]
  4. J Neurotrauma. 2011 Nov;28(11):2235-44 [PMID: 21341982]
  5. Stapp Car Crash J. 2003 Oct;47:79-92 [PMID: 17096245]
  6. Annu Rev Biomed Eng. 2013;15:227-51 [PMID: 23642242]
  7. J Safety Res. 2012 Sep;43(4):299-307 [PMID: 23127680]
  8. Sci Rep. 2020 Jan 15;10(1):378 [PMID: 31942001]
  9. J Mech Behav Biomed Mater. 2021 Jan;113:104159 [PMID: 33137655]
  10. Biomech Model Mechanobiol. 2005 Mar;3(3):172-89 [PMID: 15538650]
  11. Handb Clin Neurol. 2015;127:45-66 [PMID: 25702209]
  12. J Biomech Eng. 2002 Apr;124(2):244-52 [PMID: 12002135]
  13. Bone. 2012 Sep;51(3):447-58 [PMID: 22766096]
  14. J Neurotrauma. 2019 Nov 15;36(22):3063-3091 [PMID: 30794028]
  15. J Biomech. 1998 Dec;31(12):1119-26 [PMID: 9882044]
  16. Connect Tissue Res. 1983;12(1):59-70 [PMID: 6671383]
  17. Neuroimage. 2009 Jul 1;46(3):652-7 [PMID: 19281851]
  18. Molecules. 2015 Feb 19;20(3):3527-48 [PMID: 25706756]
  19. Phys Med Biol. 2022 Apr 15;67(9): [PMID: 35316794]
  20. J Neurosci Res. 2008 May 15;86(7):1520-8 [PMID: 18189320]
  21. No To Shinkei. 1981 Oct;33(10):1057-65 [PMID: 7317209]
  22. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17759-64 [PMID: 17093050]
  23. Proc R Soc Lond B Biol Sci. 1964 Feb 18;159:503-9 [PMID: 14116017]
  24. J Neurotrauma. 2003 Nov;20(11):1163-77 [PMID: 14651804]
  25. J Toxicol Sci. 2016;41(5):595-604 [PMID: 27665769]
  26. Toxicol Appl Pharmacol. 2004 Apr 15;196(2):287-302 [PMID: 15081274]
  27. Neuroimage. 2013 Oct 1;79:145-52 [PMID: 23644001]
  28. J Biomech. 1998 Sep;31(9):801-7 [PMID: 9802780]
  29. Br J Neurosurg. 2002 Jun;16(3):220-42 [PMID: 12201393]
  30. Endocr Rev. 1993 Feb;14(1):94-106 [PMID: 8491157]
  31. Biorheology. 2005;42(3):209-23 [PMID: 15894820]
  32. J Biomech Eng. 2010 Jan;132(1):011010 [PMID: 20524748]
  33. J Cell Biol. 1988 Apr;106(4):1205-11 [PMID: 3360851]
  34. Acta Biomater. 2013 Jun;9(6):6860-6 [PMID: 23462553]
  35. Stapp Car Crash J. 2007 Oct;51:81-114 [PMID: 18278592]
  36. Handb Clin Neurol. 2015;127:3-13 [PMID: 25702206]
  37. J Mech Behav Biomed Mater. 2014 Jan;29:213-24 [PMID: 24099950]
  38. PLoS One. 2021 Jan 28;16(1):e0245685 [PMID: 33507989]
  39. J Tissue Eng. 2014 Dec 20;5:2041731414557112 [PMID: 25610589]
  40. Acta Biomater. 2011 Jan;7(1):83-95 [PMID: 20603231]
  41. Surg Neurol. 1976 Mar;5(3):187-210 [PMID: 1257894]
  42. Biomed Mater. 2021 Oct 19;16(6): [PMID: 34587593]
  43. J Biomech Eng. 2014 Feb;136(2):021008 [PMID: 24384610]
  44. J Biomech Eng. 2000 Aug;122(4):364-71 [PMID: 11036559]
  45. Concussion. 2017 Jun 08;2(3):CNC42 [PMID: 30202583]
  46. J Neuroinflammation. 2021 Mar 29;18(1):83 [PMID: 33781276]
  47. Biorheology. 2010;47(5-6):255-76 [PMID: 21403381]
  48. Pediatr Neurosurg. 2000 Aug;33(2):76-82 [PMID: 11070433]
  49. J Neurosurg. 2000 Sep;93(3):455-62 [PMID: 10969944]

Grants

  1. R01 NS093985/NINDS NIH HHS
  2. R01 NS101955/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0propertiesbraintissueageviscoelasticcortexmechanicalpostnatalratsmodulidevelopmentstudyregenerationage-dependentcerebralfactorbiomaterial-assistedbiomaterialscrucialthroughoutadulthoodstudiesratstoragelossnativemaycharacterizationavailablefillgapcharacterizedlinearages4rangeoscillatoryG'G″datapost-nataldampingG″/G'ratiorad/sstress-relaxationresponsedeterminingearlyprovideguidelinesage-specifichelpdefineRecenteffortsengineeringsuggestmatchparticularvaryfunctiondatedetailedsparsepointsanimalwell-spaceddaymonthsoldwidelyusedneuralUsingrheometercorticalslicesmeasuredindependentlydemonstratedincreasesremainedconstantlowstrainfrequencies<10starteddeclinemediumfrequency10-100changesincreasedconsistentincreasingstiffnessTakentogetherdemonstratesbiomechanicsStatementsignificance:StudiessparselyknowledgestagemeasuringfoundfindingsbiomechanicalexperimentalmodelsAge-dependentAge-dependenceCerebralRheometryViscoelastic

Similar Articles

Cited By