Neonatal oxytocin gives the tempo of social and feeding behaviors.

Françoise Muscatelli, Valery Matarazzo, Bice Chini
Author Information
  1. Françoise Muscatelli: Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France.
  2. Valery Matarazzo: Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France.
  3. Bice Chini: Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy and NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.

Abstract

The nonapeptide oxytocin (OT) is a master regulator of the social brain in early infancy, adolescence, and adult life. Here, we review the postnatal dynamic development of OT-system as well as early-life OT functions that are essential for shaping social behaviors. We specifically address the role of OT in neonates, focusing on its role in modulating/adapting sensory input and feeding behavior; both processes are involved in the establishing mother-infant bond, a crucial event for structuring all future social interactions. In patients and rodent models of Prader-Willi and Schaaf-Yang syndromes, two neurodevelopmental diseases characterized by autism-related features, sensory impairments, and feeding difficulties in early infancy are linked to an alteration of OT-system. Successful preclinical studies in mice and a phase I/II clinical trial in Prader-Willi babies constitute a proof of concept that OT-treatment in early life not only improves suckling deficit but has also a positive long-term effect on learning and social behavior. We propose that in early postnatal life, OT plays a pivotal role in stimulating and coordinating the maturation of neuronal networks controlling feeding behavior and the first social interactions. Consequently, OT therapy might be considered to improve feeding behavior and, all over the life, social cognition, and learning capabilities.

Keywords

References

  1. Dev Neurobiol. 2017 Feb;77(2):143-157 [PMID: 27273834]
  2. Neuron. 2018 Sep 5;99(5):887-904 [PMID: 30189208]
  3. Biol Psychiatry. 2011 May 1;69(9):875-82 [PMID: 21306704]
  4. J Neuroendocrinol. 2016 Apr;28(4): [PMID: 26763721]
  5. J Midwifery Womens Health. 2014 Jan-Feb;59(1):35-42: quiz 108 [PMID: 24472136]
  6. Mol Psychiatry. 2021 Dec;26(12):7582-7595 [PMID: 34290367]
  7. Neuron. 2020 Nov 25;108(4):659-675.e6 [PMID: 33113347]
  8. Front Behav Neurosci. 2013 Dec 11;7:195 [PMID: 24376405]
  9. Pediatrics. 2017 Feb;139(2): [PMID: 28100688]
  10. Neuron. 2010 Mar 25;65(6):768-79 [PMID: 20346754]
  11. Curr Top Behav Neurosci. 2018;35:3-29 [PMID: 28812263]
  12. Nature. 2007 Mar 1;446(7131):41-5 [PMID: 17287729]
  13. Horm Behav. 2003 Sep;44(3):178-84 [PMID: 14609540]
  14. Neuroscience. 1993 Mar;53(1):65-75 [PMID: 8469313]
  15. Neurosci Lett. 2008 Dec 19;448(1):67-70 [PMID: 18926879]
  16. Dev Neurobiol. 2021 May;81(4):366-388 [PMID: 33609001]
  17. Horm Behav. 2011 Nov;60(5):549-58 [PMID: 21872599]
  18. Cereb Cortex. 2007 Oct;17(10):2268-75 [PMID: 17150985]
  19. Neuron. 2022 Mar 16;110(6):1051-1067.e7 [PMID: 35045339]
  20. Behav Brain Res. 2009 Jun 25;200(2):346-58 [PMID: 19374020]
  21. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17139-44 [PMID: 18955705]
  22. Biochem Biophys Res Commun. 2017 May 20;487(1):47-53 [PMID: 28389244]
  23. Neuropsychopharmacology. 2022 Oct;47(11):1901-1912 [PMID: 35396500]
  24. Front Neuroendocrinol. 2009 Oct;30(4):548-557 [PMID: 19505497]
  25. Science. 2005 Nov 4;310(5749):805-10 [PMID: 16272112]
  26. Dev Psychobiol. 2011 Dec;53(8):813-27 [PMID: 21594869]
  27. Dev Psychobiol. 2013 Dec;55(8):888-901 [PMID: 23037148]
  28. Diseases. 2016 Jan 13;4(1): [PMID: 28933382]
  29. Physiol Behav. 1978 Apr;20(4):385-9 [PMID: 693608]
  30. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16096-101 [PMID: 16249339]
  31. Int J Gynaecol Obstet. 2001 Nov;75 Suppl 1:S39-S45 [PMID: 29645262]
  32. Horm Behav. 2012 Mar;61(3):304-12 [PMID: 22197269]
  33. Curr Top Behav Neurosci. 2018;35:213-237 [PMID: 28864977]
  34. PLoS One. 2017 Feb 24;12(2):e0172904 [PMID: 28235051]
  35. Ann N Y Acad Sci. 1997 Jan 15;807:543-5 [PMID: 9071394]
  36. Ann N Y Acad Sci. 2003 Dec;1008:122-31 [PMID: 14998878]
  37. Nat Commun. 2020 Apr 20;11(1):1885 [PMID: 32313029]
  38. Behav Neurosci. 2003 Aug;117(4):854-9 [PMID: 12931969]
  39. J Comp Neurol. 2018 Aug 1;526(11):1820-1842 [PMID: 29665010]
  40. Acta Paediatr. 1996 May;85(5):525-30 [PMID: 8827091]
  41. J Neuroendocrinol. 2017 Oct 12;: [PMID: 29024187]
  42. Neurosci Biobehav Rev. 2017 May;76(Pt A):87-98 [PMID: 28434591]
  43. Hum Mol Genet. 2010 Dec 15;19(24):4895-905 [PMID: 20876615]
  44. Science. 2014 Feb 7;343(6171):675-9 [PMID: 24503856]
  45. Child Dev. 2016 Jan-Feb;87(1):122-34 [PMID: 26822448]
  46. Neuropeptides. 2017 Aug;64:27-38 [PMID: 28162847]
  47. Neurosci Biobehav Rev. 2016 Apr;63:168-76 [PMID: 26828138]
  48. Sci Rep. 2021 Feb 12;11(1):3746 [PMID: 33580133]
  49. Psychoneuroendocrinology. 2019 Jan;99:128-136 [PMID: 30227351]
  50. Neuroscience. 2007 Jan 5;144(1):38-45 [PMID: 17055176]
  51. J Neuroendocrinol. 2012 May;24(5):831-40 [PMID: 22260655]
  52. Rev Reprod. 2000 Sep;5(3):153-63 [PMID: 11006165]
  53. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6661-5 [PMID: 293752]
  54. Front Neuroendocrinol. 2009 Oct;30(4):442-459 [PMID: 19442683]
  55. Commun Biol. 2021 May 14;4(1):586 [PMID: 33990685]
  56. Sci Adv. 2019 May 01;5(5):eaav2244 [PMID: 31049395]
  57. Science. 2014 Aug 15;345(6198):771-6 [PMID: 25124431]
  58. Front Hum Neurosci. 2012 Feb 28;6:31 [PMID: 22375116]
  59. J Physiol. 2017 Jun 1;595(11):3591-3605 [PMID: 28211122]
  60. Curr Top Behav Neurosci. 2018;35:193-211 [PMID: 28942595]
  61. Horm Behav. 2012 Mar;61(3):313-9 [PMID: 22245313]
  62. Dev Psychobiol. 2007 Mar;49(2):139-49 [PMID: 17299786]
  63. Front Endocrinol (Lausanne). 2015 May 19;6:76 [PMID: 26042087]
  64. Curr Top Behav Neurosci. 2018;35:239-268 [PMID: 28812269]
  65. J Neurosci. 2001 Oct 15;21(20):8278-85 [PMID: 11588199]
  66. Anim Sci J. 2012 Jun;83(6):446-52 [PMID: 22694327]
  67. J Neuroendocrinol. 2020 Jun;32(6):e12856 [PMID: 32406599]
  68. Neuron. 2016 May 4;90(3):609-21 [PMID: 27112498]
  69. Elife. 2021 Mar 29;10: [PMID: 33780330]
  70. Sci Rep. 2021 Jan 27;11(1):2335 [PMID: 33504846]
  71. Int J Pediatr. 2012;2012:129328 [PMID: 23056061]
  72. Brain Res Dev Brain Res. 2003 Jul 12;143(2):119-28 [PMID: 12855183]
  73. Nature. 2021 Aug;596(7873):553-557 [PMID: 34381215]
  74. Mol Brain. 2016 Dec 13;9(1):98 [PMID: 27964753]
  75. Nature. 2020 Aug;584(7820):252-256 [PMID: 32760004]
  76. Proc Natl Acad Sci U S A. 2014 May 13;111(19):6922-7 [PMID: 24778211]
  77. Horm Behav. 2020 Nov;126:104822 [PMID: 32730760]
  78. iScience. 2021 Dec 18;25(1):103655 [PMID: 35028535]
  79. Neuropeptides. 2018 Dec;72:1-11 [PMID: 30287150]
  80. Neurochem Res. 1996 Jan;21(1):87-96 [PMID: 8833228]
  81. Trends Cogn Sci. 2020 Jul;24(7):515-528 [PMID: 32360118]
  82. PLoS One. 2011 Mar 09;6(3):e17460 [PMID: 21408007]
  83. Neuroscience. 2010 Feb 3;165(3):723-35 [PMID: 19896520]
  84. J Exp Psychol Anim Behav Process. 1982 Oct;8(4):329-41 [PMID: 7175445]
  85. Nature. 2003 Jul 3;424(6944):68-72 [PMID: 12840760]
  86. Physiol Behav. 2003 Nov;80(2-3):233-41 [PMID: 14637221]
  87. Pharmacol Rev. 2020 Oct;72(4):829-861 [PMID: 32912963]
  88. Curr Top Behav Neurosci. 2018;35:55-75 [PMID: 28812265]
  89. Nature. 2020 Nov;587(7834):426-431 [PMID: 33029014]
  90. Transl Psychiatry. 2015 Jul 21;5:e606 [PMID: 26196439]
  91. Transl Psychiatry. 2022 Aug 8;12(1):318 [PMID: 35941105]
  92. Biol Psychiatry. 2015 Jul 15;78(2):85-94 [PMID: 25599930]
  93. Brain Res Dev Brain Res. 1991 Jan 15;58(1):13-24 [PMID: 1826642]
  94. J Neuroendocrinol. 2013 Feb;25(2):107-18 [PMID: 22967062]
  95. Neurosci Res. 1996 Feb;24(3):291-304 [PMID: 8815448]
  96. Horm Behav. 2010 Sep;58(4):575-81 [PMID: 20688065]
  97. Physiol Rev. 2018 Jul 1;98(3):1805-1908 [PMID: 29897293]
  98. Neurosci Biobehav Rev. 2005;29(7):1089-105 [PMID: 16099507]
  99. Stress. 2015;18(4):451-61 [PMID: 26061800]
  100. Dev Psychobiol. 2012 Jan;54(1):92-7 [PMID: 21594870]
  101. J Neurosci. 2022 Jun 22;42(25):5021-5033 [PMID: 35606144]
  102. J Neurosci. 1989 May;9(5):1764-73 [PMID: 2542479]
  103. Curr Biol. 2021 Jan 25;31(2):322-333.e5 [PMID: 33157028]
  104. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11699-704 [PMID: 8876199]
  105. Nature. 2015 Apr 23;520(7548):499-504 [PMID: 25874674]
  106. Neuropharmacology. 2010 Jan;58(1):78-87 [PMID: 19560475]
  107. Nat Neurosci. 2014 Mar;17(3):391-9 [PMID: 24464043]
  108. Nat Neurosci. 2020 Sep;23(9):1125-1137 [PMID: 32719563]
  109. Methods Mol Biol. 2022;2384:127-137 [PMID: 34550572]
  110. Biol Neonate. 2000 Nov;78(4):293-9 [PMID: 11093009]
  111. Horm Behav. 2000 Mar;37(2):145-55 [PMID: 10753584]
  112. J Neuroendocrinol. 2021 Nov;33(11):e13049 [PMID: 34713517]

Word Cloud

Created with Highcharts 10.0.0socialOTfeedingearlylifebehavioroxytocinrolePrader-WilliinfancypostnatalOT-systembehaviorssensoryinteractionsSchaaf-Yangsucklinglearningsyndromenonapeptidemasterregulatorbrainadolescenceadultreviewdynamicdevelopmentwellearly-lifefunctionsessentialshapingspecificallyaddressneonatesfocusingmodulating/adaptinginputprocessesinvolvedestablishingmother-infantbondcrucialeventstructuringfuturepatientsrodentmodelssyndromestwoneurodevelopmentaldiseasescharacterizedautism-relatedfeaturesimpairmentsdifficultieslinkedalterationSuccessfulpreclinicalstudiesmicephaseI/IIclinicaltrialbabiesconstituteproofconceptOT-treatmentimprovesdeficitalsopositivelong-termeffectproposeplayspivotalstimulatingcoordinatingmaturationneuronalnetworkscontrollingfirstConsequentlytherapymightconsideredimprovecognitioncapabilitiesNeonatalgivestempoautismneurodevelopmentinteraction

Similar Articles

Cited By