Inspiration from cruzioseptin-1: membranolytic analogue with improved antibacterial properties.

Sebastián Bermúdez-Puga, Giovanna Morán-Marcillo, Nina Espinosa de Los Monteros-Silva, Renato E Naranjo, Fernanda Toscano, Karla Vizuete, Marbel Torres Arias, José R Almeida, Carolina Proaño-Bolaños
Author Information
  1. Sebastián Bermúdez-Puga: Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
  2. Giovanna Morán-Marcillo: Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
  3. Nina Espinosa de Los Monteros-Silva: Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
  4. Renato E Naranjo: Dirección Nacional de Biodiversidad, Ministerio del Ambiente, Agua y Transición Ecológica, Madrid 1159 y Andalucía, Quito, 170525, Ecuador.
  5. Fernanda Toscano: Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador.
  6. Karla Vizuete: Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 170501, Ecuador.
  7. Marbel Torres Arias: Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador.
  8. José R Almeida: Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
  9. Carolina Proaño-Bolaños: Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador. carolina.proano@ikiam.edu.ec. ORCID

Abstract

Peptide engineering has gained attraction as a source of new cationicity-enhanced analogues with high potential for the design of next-generation antibiotics. In this context, cruzioseptin-1 (CZS-1), a peptide identified from Cruziohyla calcarifer, is recognized for its antimicrobial potency. However, this amidated-peptide is moderately hemolytic. In order to reduce toxicity and increase antimicrobial potency, 3 peptide analogues based on cruzioseptin-1 were designed and evaluated. [K4K15]CZS-1, an analogue with increased cationicity and reduced hydrophobicity, showed antibacterial, antifungal and antiproliferative properties. In addition, [K4K15]CZS-1 is less hemolytic than CZS-1. The in silico and scanning electron microscopy analysis reveal that [K4K15]CZS-1 induces a membranolytic effect on bacteria. Overall, these results confirm the potential of CZS-1 as source of inspiration for design new selective antimicrobial analogues useful for development of new therapeutic agents.

Keywords

References

  1. Almeida JR, Mendes B, Lancellotti M et al (2018) A novel synthetic peptide inspired on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2018.02.055 [DOI: 10.1016/j.ejmech.2018.02.055]
  2. Almeida JR, Mendes B, Lancellotti M et al (2022) (2021) Lessons from a single amino acid substitution: anticancer and antibacterial properties of two phospholipase A2-derived peptides. Curr Issues Mol Biol 44:46–62. https://doi.org/10.3390/CIMB44010004 [DOI: 10.3390/CIMB44010004]
  3. Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z (2017) Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. J. Fungi. 3(3):46. https://doi.org/10.3390/jof3030046 [DOI: 10.3390/jof3030046]
  4. Cardoso MH, Ribeiro SM, Nolasco DO et al (2016) A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep. https://doi.org/10.1038/srep21385 [DOI: 10.1038/srep21385]
  5. Carolus H, Van Dyck K, Van Dijck P (2019) Candida albicans and Staphylococcus species: a threatening twosome. Front Microbiol 10:2162. https://doi.org/10.3389/fmicb.2019.02162 [DOI: 10.3389/fmicb.2019.02162]
  6. Chaudhary K, Kumar R, Singh S et al (2016) A web server and mobile app for computing hemolytic potency of peptides. Sci Rep. https://doi.org/10.1038/srep22843 [DOI: 10.1038/srep22843]
  7. Conlon JM, Abraham B, Galadari S et al (2005) Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives. Peptides. https://doi.org/10.1016/j.peptides.2005.04.003 [DOI: 10.1016/j.peptides.2005.04.003]
  8. Cuesta SA, Reinoso C, Morales F et al (2021) Novel antimicrobial cruzioseptin peptides extracted from the splendid leaf frog Cruziohyla Calcarifer. Amino Acids. https://doi.org/10.1007/s00726-021-02986-w [DOI: 10.1007/s00726-021-02986-w]
  9. da Cunha NB, Cobacho NB, Viana JFC et al (2017) The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today 22:234–248. https://doi.org/10.1016/J.DRUDIS.2016.10.017 [DOI: 10.1016/J.DRUDIS.2016.10.017]
  10. de Alteriis E, Maselli V, Falanga A et al (2018) Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist. https://doi.org/10.2147/IDR.S164262 [DOI: 10.2147/IDR.S164262]
  11. Dennison S, Harris F, Phoenix D (2009) A Study on the importance of phenylalanine for aurein functionality. Protein Pept Lett. https://doi.org/10.2174/092986609789839340 [DOI: 10.2174/092986609789839340]
  12. Du Q, Hou X, Ge L et al (2014) Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines. Int J Biol Sci. https://doi.org/10.7150/ijbs.9859 [DOI: 10.7150/ijbs.9859]
  13. Felício MR, Silva ON, Gonçalves S et al (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem. https://doi.org/10.3389/FCHEM.2017.00005 [DOI: 10.3389/FCHEM.2017.00005]
  14. Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD (2020) Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol 10:105. https://doi.org/10.3389/fcimb.2020.00105 [DOI: 10.3389/fcimb.2020.00105]
  15. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128. https://doi.org/10.1016/J.DRUDIS.2014.10.003 [DOI: 10.1016/J.DRUDIS.2014.10.003]
  16. Gao Y, Wu D, Wang L et al (2017) Targeted modification of a novel amphibian antimicrobial peptide from Phyllomedusa tarsius to enhance its activity against MRSA and microbial biofilm. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00628 [DOI: 10.3389/fmicb.2017.00628]
  17. Gaspar D, Salomé Veiga A, Castanho MARB (2013) From antimicrobial to anticancer peptides. A Review Front Microbiol 4:294. https://doi.org/10.3389/FMICB.2013.00294 [DOI: 10.3389/FMICB.2013.00294]
  18. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. https://doi.org/10.1093/bioinformatics/btn392 [DOI: 10.1093/bioinformatics/btn392]
  19. Gong Z, Pei X, Ren S et al (2020) Identification and rational design of a novel antibacterial peptide dermaseptin-ac from the skin secretion of the red-eyed tree frog Agalychnis callidryas. Antibiotics. https://doi.org/10.3390/antibiotics9050243 [DOI: 10.3390/antibiotics9050243]
  20. Gupta S, Kapoor P, Chaudhary K et al (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. https://doi.org/10.1371/journal.pone.0073957 [DOI: 10.1371/journal.pone.0073957]
  21. Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem. https://doi.org/10.1074/jbc.M709154200 [DOI: 10.1074/jbc.M709154200]
  22. Hollmann A, Martínez M, Noguera ME et al (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.02.003 [DOI: 10.1016/j.colsurfb.2016.02.003]
  23. Huang JF, Xu YM, Hao DM et al (2010) Structure-guided de novo design of α-helical antimicrobial peptide with enhanced specificity. Pure Appl Chem 82:243–257. https://doi.org/10.1351/PAC-CON-09-01-12 [DOI: 10.1351/PAC-CON-09-01-12]
  24. Huang Y, He L, Li G et al (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5:631–642. https://doi.org/10.1007/S13238-014-0061-0/FIGURES/4 [DOI: 10.1007/S13238-014-0061-0/FIGURES/4]
  25. Jiang Z, Vasil AI, Vasil ML, Hodges RS (2014) “Specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin S4 against the gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals. https://doi.org/10.3390/ph7040366 [DOI: 10.3390/ph7040366]
  26. Jiang Y, Wu Y, Wang T et al (2020) Brevinin-1GHd: a novel Hylarana guentheri skin secretion-derived Brevinin-1 type peptide with antimicrobial and anticancer therapeutic potential. Biosci Rep. https://doi.org/10.1042/BSR20200019
  27. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945 [DOI: 10.1002/jcc.20945]
  28. Lee E, Shin A, Jeong KW et al (2014) Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS ONE. https://doi.org/10.1371/journal.pone.0114453 [DOI: 10.1371/journal.pone.0114453]
  29. Lee J, Cheng X, Swails JM et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413. https://doi.org/10.1021/acs.jctc.5b00935 [DOI: 10.1021/acs.jctc.5b00935]
  30. Lee EY, Lee MW, Fulan BM et al (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus. https://doi.org/10.1098/RSFS.2016.0153 [DOI: 10.1098/RSFS.2016.0153]
  31. Lei J, Sun LC, Huang S et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919
  32. Li X, Li Y, Peterkofsky A, Wang G (2006) NMR studies of aurein 1.2 analogs. Biochim Biophys Acta Biomembr. https://doi.org/10.1016/j.bbamem.2006.03.032 [DOI: 10.1016/j.bbamem.2006.03.032]
  33. Liscano Y, Oñate-Garzón J (2020) Delgado JP (2020) Peptides with dual antimicrobial–anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 25:4245. https://doi.org/10.3390/MOLECULES25184245 [DOI: 10.3390/MOLECULES25184245]
  34. Lum KY, Tay ST, Le CF et al (2015) Activity of novel synthetic peptides against Candida albicans. Sci Rep. https://doi.org/10.1038/srep09657 [DOI: 10.1038/srep09657]
  35. Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep. https://doi.org/10.1038/srep42362 [DOI: 10.1038/srep42362]
  36. Mendes B, Proaño-Bolaños C, Gadelha FR et al (2020) Cruzioseptins, antibacterial peptides from Cruziohyla calcarifer skin, as promising leishmanicidal agents. Pathog Dis. https://doi.org/10.1093/femspd/ftaa053 [DOI: 10.1093/femspd/ftaa053]
  37. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332 [DOI: 10.1038/s41573-019-0058-8]
  38. Muller JAI, Lawrence N, Chan LY et al (2021) Antimicrobial and anticancer properties of synthetic peptides derived from the Wasp Parachartergus fraternus. ChemBioChem 22:1415–1423. https://doi.org/10.1002/CBIC.202000716 [DOI: 10.1002/CBIC.202000716]
  39. Nguyen LT, Chau JK, Perry NA et al (2010) Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 5:1–8. https://doi.org/10.1371/journal.pone.0012684 [DOI: 10.1371/journal.pone.0012684]
  40. Oliveira NGJ, Cardoso MH, Velikova N et al (2020) Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential. Sci Rep 101(10):1–11. https://doi.org/10.1038/s41598-020-66164-w [DOI: 10.1038/s41598-020-66164-w]
  41. Oroz-Parra I, Navarro M, Cervantes-Luevano KE et al (2016) Apoptosis activation in human lung cancer cell lines by a novel synthetic peptide derived from Conus californicus Venom. Toxins. https://doi.org/10.3390/TOXINS8020038 [DOI: 10.3390/TOXINS8020038]
  42. Pei X, Gong Z, Wu Q et al (2021) Characterisation of a novel peptide, Brevinin-1H, from the skin secretion of Amolops hainanensis and rational design of several analogues. Chem Biol Drug Des 97:273–282. https://doi.org/10.1111/CBDD.13779 [DOI: 10.1111/CBDD.13779]
  43. Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:281.  https://doi.org/10.3389/fphar.2018.00281 [DOI: 10.3389/fphar.2018.00281]
  44. Porto WF, Irazazabal L, Alves ESF et al (2018) In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 91(9):1–12. https://doi.org/10.1038/s41467-018-03746-3 [DOI: 10.1038/s41467-018-03746-3]
  45. Proaño-Bolaños C, Zhou M, Wang L et al (2016) Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer. J Proteomics 146:1–13. https://doi.org/10.1016/J.JPROT.2016.06.017 [DOI: 10.1016/J.JPROT.2016.06.017]
  46. Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B et al (2022) Traditional and computational screening of non-toxic peptides and approaches to improving selectivity. Front Pharmacol 15:323. https://doi.org/10.3390/PH15030323 [DOI: 10.3390/PH15030323]
  47. Rončević T, Puizina J, Tossi A (2019) Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci 20:5713 [DOI: 10.3390/ijms20225713]
  48. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5 [DOI: 10.1038/nprot.2010.5]
  49. Sarkar T, Chetia M, Chatterjee S (2021) Antimicrobial peptides and proteins: from nature’s reservoir to the laboratory and beyond. Front Chem 9:432. https://doi.org/10.3389/fchem.2021.691532 [DOI: 10.3389/fchem.2021.691532]
  50. Ting DSJ, Beuerman RW, Dua HS et al (2020) Strategies in translating the therapeutic potentials of host defense peptides. Front Immunol 11:983.  https://doi.org/10.3389/fimmu.2020.00983 [DOI: 10.3389/fimmu.2020.00983]
  51. Trott O, Olson A (2009) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334 [DOI: 10.1002/jcc.21334]
  52. Valdivieso-Rivera F, Bermúdez-Puga S, Proaño-Bolaños C, Almeida JR (2022) Deciphering the limitations and antibacterial mechanism of cruzioseptins. Int J Pept Res Ther. https://doi.org/10.1007/s10989-022-10383-4 [DOI: 10.1007/s10989-022-10383-4]
  53. Wang H, He H, Chen X et al (2020) A novel antimicrobial peptide (Kassinatuerin-3) isolated from the skin secretion of the african frog, Kassina senegalensis. Biology 9:1–14. https://doi.org/10.3390/BIOLOGY9070148 [DOI: 10.3390/BIOLOGY9070148]
  54. Xie J, Gou Y, Zhao Q et al (2014) Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. https://doi.org/10.1002/psc.2679 [DOI: 10.1002/psc.2679]
  55. Ying Y, Wang H, Xi X et al (2019) Design of N-Terminal derivatives from a novel dermaseptin exhibiting broad-spectrum antimicrobial activity against isolates from cystic fibrosis patients. Biomolecules. https://doi.org/10.3390/biom9110646 [DOI: 10.3390/biom9110646]
  56. Yuan Y, Zai Y, Xi X et al (2019) A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Biochim Biophys Acta - Gen Subj. https://doi.org/10.1016/j.bbagen.2019.02.013 [DOI: 10.1016/j.bbagen.2019.02.013]

Grants

  1. GEF ID 5534/Global Environment Facility

MeSH Term

Antimicrobial Cationic Peptides
Amino Acid Sequence
Anti-Bacterial Agents
Anti-Infective Agents
Antifungal Agents
Microbial Sensitivity Tests

Chemicals

Antimicrobial Cationic Peptides
Anti-Bacterial Agents
Anti-Infective Agents
Antifungal Agents

Word Cloud

Created with Highcharts 10.0.0newanaloguesdesignCZS-1antimicrobial[K4K15]CZS-1sourcepotentialcruzioseptin-1peptidepotencyhemolyticanalogueantibacterialpropertiesmembranolyticeffectPeptideengineeringgainedattractioncationicity-enhancedhighnext-generationantibioticscontextidentifiedCruziohylacalcariferrecognizedHoweveramidated-peptidemoderatelyorderreducetoxicityincrease3baseddesignedevaluatedincreasedcationicityreducedhydrophobicityshowedantifungalantiproliferativeadditionlesssilicoscanningelectronmicroscopyanalysisrevealinducesbacteriaOverallresultsconfirminspirationselectiveusefuldevelopmenttherapeuticagentsInspirationcruzioseptin-1:improvedAntimicrobialpeptidesCruzioseptinMembranolyticRational

Similar Articles

Cited By