Towards precision medicine: Omics approach for COVID-19.

Xiaoping Cen, Fengao Wang, Xinhe Huang, Dragomirka Jovic, Fred Dubee, Huanming Yang, Yixue Li
Author Information
  1. Xiaoping Cen: College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  2. Fengao Wang: Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China.
  3. Xinhe Huang: Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
  4. Dragomirka Jovic: BGI-Shenzhen, Shenzhen 518083, China.
  5. Fred Dubee: Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China.
  6. Huanming Yang: College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  7. Yixue Li: Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic had a devastating impact on human society. Beginning with genome surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of omics technologies brought a clearer understanding of the complex SARS-CoV-2 and COVID-19. Here, we reviewed how omics, including genomics, proteomics, single-cell multi-omics, and clinical phenomics, play roles in answering biological and clinical questions about COVID-19. Large-scale sequencing and advanced analysis methods facilitate COVID-19 discovery from virus evolution and severity risk prediction to potential treatment identification. Omics would indicate precise and globalized prevention and medicine for the COVID-19 pandemic under the utilization of big data capability and phenotypes refinement. Furthermore, decoding the evolution rule of SARS-CoV-2 by deep learning models is promising to forecast new variants and achieve more precise data to predict future pandemics and prevent them on time.

Keywords

References

  1. Euro Surveill. 2021 Jun;26(24): [PMID: 34142653]
  2. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11059-63 [PMID: 16046546]
  3. J Med Virol. 2022 Apr;94(4):1738-1744 [PMID: 34905235]
  4. Signal Transduct Target Ther. 2022 Jul 19;7(1):241 [PMID: 35853878]
  5. MedComm (2020). 2021 Dec 16;2(4):838-845 [PMID: 34957469]
  6. Nat Commun. 2020 Jul 15;11(1):3543 [PMID: 32669540]
  7. Expert Rev Vaccines. 2021 Oct;20(10):1201-1209 [PMID: 34488546]
  8. Nature. 2022 Feb;602(7897):487-495 [PMID: 34942634]
  9. Science. 2021 Jan 15;371(6526):284-288 [PMID: 33446556]
  10. Cell Discov. 2021 Aug 31;7(1):76 [PMID: 34465742]
  11. Elife. 2020 Nov 09;9: [PMID: 33164753]
  12. N Engl J Med. 2020 Oct 15;383(16):1522-1534 [PMID: 32558485]
  13. Nat Commun. 2021 Jul 27;12(1):4543 [PMID: 34315889]
  14. Nat Mach Intell. 2021 Sep;3:787-798 [PMID: 34841195]
  15. OMICS. 2022 Jan;26(1):19-34 [PMID: 35005991]
  16. Nat Med. 2022 Jun;28(6):1141-1148 [PMID: 35715504]
  17. Nat Commun. 2020 Sep 1;11(1):4376 [PMID: 32873808]
  18. Genomics Proteomics Bioinformatics. 2022 Feb;20(1):60-69 [PMID: 35033679]
  19. Nat Commun. 2022 Jan 21;13(1):440 [PMID: 35064122]
  20. Cell. 2021 Jan 7;184(1):64-75.e11 [PMID: 33275900]
  21. Nat Genet. 2022 Apr;54(4):499-507 [PMID: 35347305]
  22. RSC Chem Biol. 2021 Jan 20;2(2):441-449 [PMID: 34458793]
  23. NPJ Digit Med. 2021 Mar 29;4(1):60 [PMID: 33782526]
  24. Nat Med. 2022 Jun;28(6):1303-1313 [PMID: 35606551]
  25. Immunity. 2022 Mar 8;55(3):542-556.e5 [PMID: 35151371]
  26. BMJ. 2022 Feb 16;376:o407 [PMID: 35172970]
  27. Nat Genet. 2021 Nov;53(11):1606-1615 [PMID: 34737427]
  28. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  29. Nat Aging. 2021 Jun;1(6):535-549 [PMID: 37117829]
  30. Nat Rev Genet. 2022 Sep;23(9):547-562 [PMID: 35459859]
  31. Innovation (Camb). 2022 Sep 13;3(5):100289 [PMID: 35879967]
  32. Crit Rev Clin Lab Sci. 2021 Jun;58(4):242-252 [PMID: 33375876]
  33. Cell. 2021 Feb 4;184(3):775-791.e14 [PMID: 33503446]
  34. Nat Genet. 2022 Apr;54(4):382-392 [PMID: 35241825]
  35. Nat Med. 2020 Sep;26(9):1398-1404 [PMID: 32647358]
  36. JAMA Psychiatry. 2022 Nov 1;79(11):1081-1091 [PMID: 36069885]
  37. Nat Med. 2020 Sep;26(9):1405-1410 [PMID: 32678356]
  38. Elife. 2021 Feb 11;10: [PMID: 33570490]
  39. Sci Immunol. 2021 Nov 12;6(65):eabk1741 [PMID: 34591653]
  40. China CDC Wkly. 2021 Dec 3;3(49):1049-1051 [PMID: 34934514]
  41. Front Immunol. 2022 Apr 06;13:838132 [PMID: 35464396]
  42. Lancet Public Health. 2021 May;6(5):e335-e345 [PMID: 33857453]
  43. Cell Rep Med. 2022 Mar 15;3(3):100580 [PMID: 35474745]
  44. Nat Rev Genet. 2021 Dec;22(12):757-773 [PMID: 34535792]
  45. Immunity. 2020 Dec 15;53(6):1296-1314.e9 [PMID: 33296687]
  46. MedComm (2020). 2021 Sep 16;2(3):381-401 [PMID: 34766152]
  47. Clin Infect Dis. 2022 Aug 24;75(1):e1120-e1127 [PMID: 34487522]
  48. Nat Commun. 2020 Oct 30;11(1):5503 [PMID: 33127911]
  49. J Exp Med. 2021 Aug 2;218(8): [PMID: 34128959]
  50. Science. 2020 Jul 31;369(6503):582-587 [PMID: 32513865]
  51. Cell. 2020 Jun 11;181(6):1423-1433.e11 [PMID: 32416069]
  52. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):749-759 [PMID: 33704069]
  53. Nat Med. 2022 Jul;28(7):1461-1467 [PMID: 35614233]
  54. Virus Evol. 2021 Jul 30;7(2):veab064 [PMID: 34527285]
  55. Nat Genet. 2022 Feb;54(2):125-127 [PMID: 35027740]
  56. Lancet. 2022 Jun 18;399(10343):2263-2264 [PMID: 35717982]
  57. Nature. 2021 Jun;594(7862):246-252 [PMID: 33845483]
  58. Science. 2022 Aug 26;377(6609):960-966 [PMID: 35881005]
  59. Nat Commun. 2020 Aug 14;11(1):4080 [PMID: 32796848]
  60. Cell. 2022 Mar 3;185(5):881-895.e20 [PMID: 35216672]
  61. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  62. Nat Med. 2020 Aug;26(8):1224-1228 [PMID: 32427924]
  63. Nature. 2022 Oct;610(7932):428-429 [PMID: 36220900]
  64. Nature. 2021 Dec;600(7889):472-477 [PMID: 34237774]
  65. J Womens Health (Larchmt). 2022 May;31(5):620-630 [PMID: 35333613]
  66. Sci Transl Med. 2022 Feb 23;14(633):eabk3445 [PMID: 35014856]
  67. Sci Immunol. 2022 Jul 15;7(73):eabm7996 [PMID: 35857581]
  68. Nature. 2021 Dec;600(7889):408-418 [PMID: 34880490]
  69. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  70. Lancet Infect Dis. 2021 Sep;21(9):1246-1256 [PMID: 33857406]
  71. Nat Genet. 2022 Feb;54(2):121-124 [PMID: 35039640]
  72. Nucleic Acids Res. 2017 Jan 4;45(D1):D482-D490 [PMID: 27899678]
  73. Science. 2022 Oct 7;378(6615):eabq5358 [PMID: 36108049]
  74. Front Immunol. 2021 Apr 01;12:622176 [PMID: 33868239]
  75. Nature. 2021 Aug;596(7873):495-504 [PMID: 34237771]
  76. Science. 2022 Jun 17;376(6599):1327-1332 [PMID: 35608456]
  77. Nat Genet. 2021 Jun;53(6):801-808 [PMID: 33888907]
  78. Nat Metab. 2021 Jul;3(7):909-922 [PMID: 34158670]
  79. Cell Rep. 2022 Jan 18;38(3):110271 [PMID: 35026155]
  80. Cell. 2022 Mar 3;185(5):916-938.e58 [PMID: 35216673]
  81. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  82. Sci Transl Med. 2022 Jan 19;14(628):eabj7521 [PMID: 34698500]
  83. Nat Biotechnol. 2022 Jan;40(1):30-41 [PMID: 34931002]
  84. Nature. 2022 Aug;608(7921):E1-E10 [PMID: 35922517]
  85. Nat Biomed Eng. 2020 Dec;4(12):1197-1207 [PMID: 33208927]
  86. Immunity. 2020 Nov 17;53(5):1108-1122.e5 [PMID: 33128875]
  87. Nat Genet. 2022 Apr;54(4):374-381 [PMID: 35410379]
  88. Science. 2020 Oct 30;370(6516):571-575 [PMID: 32913002]
  89. NPJ Digit Med. 2021 Feb 18;4(1):29 [PMID: 33603193]
  90. Science. 2021 Feb 5;371(6529): [PMID: 33303686]
  91. JAMA Netw Open. 2022 Feb 1;5(2):e2147053 [PMID: 35119459]
  92. Nat Commun. 2022 Jul 6;13(1):3896 [PMID: 35794110]
  93. J Proteome Res. 2021 Oct 1;20(10):4627-4639 [PMID: 34550702]
  94. Sci Transl Med. 2023 Jan 25;15(680):eabn7979 [PMID: 36346321]
  95. Nature. 2020 Jul;583(7816):437-440 [PMID: 32434211]
  96. Value Health. 2022 May;25(5):699-708 [PMID: 35500944]

Word Cloud

Created with Highcharts 10.0.0COVID-19SARS-CoV-2coronaviruspandemicomicsclinicalevolutionOmicsprecisemedicinedatadisease2019devastatingimpacthumansocietyBeginninggenomesurveillancesevereacuterespiratorysyndrome2developmenttechnologiesbroughtclearerunderstandingcomplexreviewedincludinggenomicsproteomicssingle-cellmulti-omicsphenomicsplayrolesansweringbiologicalquestionsLarge-scalesequencingadvancedanalysismethodsfacilitatediscoveryvirusseverityriskpredictionpotentialtreatmentidentificationindicateglobalizedpreventionutilizationbigcapabilityphenotypesrefinementFurthermoredecodingruledeeplearningmodelspromisingforecastnewvariantsachievepredictfuturepandemicspreventtimeTowardsprecisionmedicine:approachArtificialintelligenceMulti-omicsPrecision

Similar Articles

Cited By