Variograms for kriging and clustering of spatial functional data with phase variation.

Xiaohan Guo, Sebastian Kurtek, Karthik Bharath
Author Information
  1. Xiaohan Guo: Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, OH 43210, USA.
  2. Sebastian Kurtek: Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, OH 43210, USA.
  3. Karthik Bharath: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Abstract

Spatial, amplitude and phase variations in spatial functional data are confounded. Conclusions from the popular functional trace-variogram, which quantifies spatial variation, can be misleading when analyzing misaligned functional data with phase variation. To remedy this, we describe a framework that extends amplitude-phase separation methods in functional data to the spatial setting, with a view towards performing clustering and spatial prediction. We propose a decomposition of the trace-variogram into amplitude and phase components, and quantify how spatial correlations between functional observations manifest in their respective amplitude and phase. This enables us to generate separate amplitude and phase clustering methods for spatial functional data, and develop a novel spatial functional interpolant at unobserved locations based on combining separate amplitude and phase predictions. Through simulations and real data analyses, we demonstrate advantages of our approach when compared to standard ones that ignore phase variation, through more accurate predictions and more interpretable clustering results.

Keywords

References

  1. J R Stat Soc Ser C Appl Stat. 2015 Apr;64(3):491-506 [PMID: 25926710]
  2. J Am Stat Assoc. 2022;117(540):1964-1980 [PMID: 36945325]

Grants

  1. R37 CA214955/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0phasespatialfunctionaldataamplitudevariationclusteringSpatialtrace-variogramamplitude-phaseseparationmethodsseparatepredictionsvariationsconfoundedConclusionspopularquantifiescanmisleadinganalyzingmisalignedremedydescribeframeworkextendssettingviewtowardsperformingpredictionproposedecompositioncomponentsquantifycorrelationsobservationsmanifestrespectiveenablesusgeneratedevelopnovelinterpolantunobservedlocationsbasedcombiningsimulationsrealanalysesdemonstrateadvantagesapproachcomparedstandardonesignoreaccurateinterpretableresultsVariogramskrigingAlignmenttemplateTrace-variogram

Similar Articles

Cited By (1)