Peter Simmonds, Evelien M Adriaenssens, F Murilo Zerbini, Nicola G A Abrescia, Pakorn Aiewsakun, Poliane Alfenas-Zerbini, Yiming Bao, Jakub Barylski, Christian Drosten, Siobain Duffy, W Paul Duprex, Bas E Dutilh, Santiago F Elena, Maria Laura García, Sandra Junglen, Aris Katzourakis, Eugene V Koonin, Mart Krupovic, Jens H Kuhn, Amy J Lambert, Elliot J Lefkowitz, Małgorzata Łobocka, Cédric Lood, Jennifer Mahony, Jan P Meier-Kolthoff, Arcady R Mushegian, Hanna M Oksanen, Minna M Poranen, Alejandro Reyes-Muñoz, David L Robertson, Simon Roux, Luisa Rubino, Sead Sabanadzovic, Stuart Siddell, Tim Skern, Donald B Smith, Matthew B Sullivan, Nobuhiro Suzuki, Dann Turner, Koenraad Van Doorslaer, Anne-Mieke Vandamme, Arvind Varsani, Nikos Vasilakis
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Science. 2015 May 22;348(6237):1261498
[PMID:
25999515]
mBio. 2020 Sep 1;11(5):
[PMID:
32873755]
Virology. 2017 Apr;504:114-121
[PMID:
28189969]
Virus Evol. 2017 Oct 06;3(2):vex027
[PMID:
29026649]
J Gen Virol. 2020 Jul;101(7):699-700
[PMID:
32525472]
Curr Opin Struct Biol. 2005 Dec;15(6):655-63
[PMID:
16271469]
Nat Biotechnol. 2019 Jan;37(1):29-37
[PMID:
30556814]
J Gen Virol. 2017 Mar;98(3):352-354
[PMID:
28366187]
mBio. 2018 Mar 20;9(2):
[PMID:
29559574]
Nature. 1961 Apr 22;190:302-5
[PMID:
13695331]
Nat Microbiol. 2017 Jul 10;2:17112
[PMID:
28692019]
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2401-E2410
[PMID:
28265094]
Science. 1999 Jun 25;284(5423):2124-9
[PMID:
10381871]
J Virol. 2010 Dec;84(24):12476-9
[PMID:
20926569]
Arch Virol. 2022 Apr;167(4):1231-1234
[PMID:
35043230]
Science. 2021 Aug 20;373(6557):871-876
[PMID:
34282049]
Am J Trop Med Hyg. 2018 Jul;99(1):11-16
[PMID:
29692303]
Bioinformatics. 2021 Oct 11;37(19):3337-3342
[PMID:
33964132]
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8
[PMID:
15980461]
Nat Rev Microbiol. 2019 Jul;17(7):449-458
[PMID:
31142823]
J Gen Virol. 2017 Jan;98(1):2-3
[PMID:
28218572]
BMC Biol. 2021 Jan 14;19(1):5
[PMID:
33441133]
FEMS Microbiol Rev. 2016 Mar;40(2):258-72
[PMID:
26657537]
Nat Commun. 2013;4:2700
[PMID:
24193254]
mBio. 2018 Nov 27;9(6):
[PMID:
30482837]
Science. 2018 Nov 2;362(6414):577-580
[PMID:
30385576]
Environ Microbiol. 2023 Jan;25(1):40-44
[PMID:
36097140]
Philos Trans R Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2263-74
[PMID:
19571246]
Trends Microbiol. 2020 Dec;28(12):959-967
[PMID:
33158732]
Annu Rev Genet. 2012;46:359-69
[PMID:
22934641]
Nat Commun. 2019 Jul 31;10(1):3425
[PMID:
31366885]
J Virol. 2012 Apr;86(7):3905-15
[PMID:
22278238]
J Gen Virol. 2020 Jan;101(1):1-2
[PMID:
31846417]
J Gen Virol. 2021 Dec;102(12):
[PMID:
34939563]
J Virol. 2003 Aug;77(16):8973-84
[PMID:
12885914]
Comput Biol Med. 2021 Nov;138:104883
[PMID:
34598067]
Viruses. 2023 Apr 19;15(4):
[PMID:
37112988]
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854-9
[PMID:
9618502]
Nucleic Acids Res. 2016 Jun 2;44(10):4551-64
[PMID:
27112572]
PLoS One. 2014 Sep 26;9(9):e108277
[PMID:
25259891]
Proc Soc Exp Biol Med. 1963 Apr;112:1040-50
[PMID:
13952431]
mBio. 2019 Apr 16;10(2):
[PMID:
30992348]
Annu Rev Biochem. 2012;81:795-822
[PMID:
22482909]
J Virol. 2021 Jul 12;95(15):e0067321
[PMID:
34011550]
J Fungi (Basel). 2022 Feb 24;8(3):
[PMID:
35330228]
Arch Virol. 2018 Oct;163(10):2933-2936
[PMID:
29942981]
Viruses. 2020 Nov 06;12(11):
[PMID:
33172115]
Bioinformatics. 2017 Aug 01;33(15):2379-2380
[PMID:
28379287]
Viruses. 2021 Feb 17;13(2):
[PMID:
33671332]
Bacteriol Rev. 1971 Sep;35(3):235-41
[PMID:
4329869]
Nat Commun. 2019 Mar 12;10(1):1184
[PMID:
30862777]
Microbiome. 2018 Feb 20;6(1):38
[PMID:
29458427]
Nature. 2019 Feb;566(7744):318-320
[PMID:
30787460]
Nature. 2020 Jan;577(7792):706-710
[PMID:
31942072]
Acta Virol. 1997 Oct;41(5):259-68
[PMID:
9607079]
J Struct Biol. 2013 Jul;183(1):47-56
[PMID:
23707633]
Nat Rev Microbiol. 2008 Dec;6(12):941-8
[PMID:
19008892]
Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0005321
[PMID:
34259570]
Brief Bioinform. 2017 May 1;18(3):451-457
[PMID:
27103098]
Nat Microbiol. 2020 Apr;5(4):536-544
[PMID:
32123347]
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5):
[PMID:
35078938]
Bioinformatics. 2017 Nov 01;33(21):3396-3404
[PMID:
29036289]
Microbiol Mol Biol Rev. 2020 Mar 4;84(2):
[PMID:
32132243]
Arch Virol. 2014 Dec;159(12):3293-304
[PMID:
25119676]
Cell Host Microbe. 2017 Sep 13;22(3):387-399.e6
[PMID:
28867387]
Phage (New Rochelle). 2021 Dec 1;2(4):194-203
[PMID:
36147515]
PLoS Biol. 2021 Nov 9;19(11):e3001442
[PMID:
34752450]
PLoS Comput Biol. 2021 Oct 21;17(10):e1009428
[PMID:
34673779]
Annu Rev Microbiol. 1966;20:45-74
[PMID:
5330240]
Adv Virus Res. 2020;108:127-164
[PMID:
33837715]
ISME J. 2017 Nov;11(11):2399-2406
[PMID:
28731467]
PeerJ. 2017 May 3;5:e3243
[PMID:
28480138]
Genome Res. 1998 Mar;8(3):163-7
[PMID:
9521918]
Syst Biol. 2020 Jan 1;69(1):110-123
[PMID:
31127947]
Biochemistry. 2015 May 26;54(20):3133-41
[PMID:
25955078]
Nature. 2016 Dec 22;540(7634):539-543
[PMID:
27880757]
Nat Rev Microbiol. 2020 Nov;18(11):661-670
[PMID:
32665595]
Nat Microbiol. 2020 Oct;5(10):1262-1270
[PMID:
32690954]
Mol Biol Evol. 2016 Jul;33(7):1870-4
[PMID:
27004904]
Mol Phylogenet Evol. 2022 Apr;169:107411
[PMID:
35032647]
J Virol. 2017 Mar 29;91(8):
[PMID:
28122979]
Curr Opin Virol. 2022 Feb;52:48-56
[PMID:
34883443]
mBio. 2019 Jul 30;10(4):
[PMID:
31363030]
Virol J. 2018 Apr 10;15(1):67
[PMID:
29636073]
Curr Opin Virol. 2021 Aug;49:117-126
[PMID:
34126465]
PLoS Pathog. 2019 Dec 12;15(12):e1008224
[PMID:
31830128]
Nat Microbiol. 2019 Aug;4(8):1306-1315
[PMID:
31110365]
Genome Biol. 2019 Jul 25;20(1):144
[PMID:
31345254]
Viruses. 2020 Oct 09;12(10):
[PMID:
33050291]
mBio. 2014 Jun 17;5(3):e01360-14
[PMID:
24939889]
Science. 2022 Apr 8;376(6589):156-162
[PMID:
35389782]
Curr Opin Virol. 2021 Dec;51:207-215
[PMID:
34781105]
New Microbes New Infect. 2022 Jun 01;47:100991
[PMID:
35800027]
Nat Rev Microbiol. 2017 Mar;15(3):161-168
[PMID:
28134265]
Nat Biotechnol. 2019 Jun;37(6):632-639
[PMID:
31061483]
PLoS Biol. 2019 Feb 4;17(2):e3000106
[PMID:
30716065]