Isolation, purification, and identification of antifungal protein produced by Bacillus subtilis SL-44 and anti-fungal resistance in apple.

Wumei Chen, Zhansheng Wu, Yanhui He
Author Information
  1. Wumei Chen: School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
  2. Zhansheng Wu: School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China. wuzhans@xpu.edu.cn. ORCID
  3. Yanhui He: School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.

Abstract

Apple anthracnose is a fruit fungal disease that is currently recognized as one of the most severe threats to apples worldwide. In this study, antifungal protein from Bacillus subtilis SL-44 was isolated, purified, identified, and applied for Colletotrichum gloeosporioides control. The antagonistic experiment showed that SL-44 had an excellent broad spectrum against plant pathogenic fungi. The optimal fermentation conditions were as follows: initial pH was 7, inoculum volume was 2%, and rotational speed was 180 r/min. The optimized yield of antifungal protein increased by 45.83% compared with that before. The crude protein was isolated and purified by (NH)SO precipitation, DEAE-Sepharose Fast Flow, and Sephadex G-100 column chromatography. LC-MS analyzed that antifungal protein was likely to be a novel protein with a molecular weight of 42 kDa. The mechanism revealed that the antifungal protein may disrupt the cell wall structure of C. gloeosporioides and function as its antifungal action. Additionally, antifungal protein significantly alleviated the size of the lesion to more than 70% in the apple infection protection test. In conclusion, antifungal protein has remarkable potential in developing fungicides for the biological control of apple anthracnose. HIGHLIGHTS: 1. B. subtilis SL-44 had broad-spectrum antagonism against plant pathogenic fungi. 2. The optimal fermentation conditions for extracting antifungal protein were optimized. 3. The antifungal protein is a novel protein with a molecular weight of 42 kDa. 4. The mechanism of antifungal protein may disrupt the cell wall structure of C. gloeosporioides.

Keywords

References

  1. Ahsan T, Zang C, Yu S, Pei X, Xie J, Lin Y, Liu X, Liang C (2022) Screening, and optimization of fermentation medium to produce secondary metabolites from Bacillus amyloliquefaciens, for the biocontrol of early leaf spot disease, and growth promoting effects on peanut (Arachis hypogaea L.). J Fungi 8:1223 [DOI: 10.3390/jof8111223]
  2. Aliyeva-Schnorr L, Wirsel S, Deising H (2022) Fungal pathogenesis-related cell wall biogenesis, with emphasis on the maize anthracnose fungus Colletotrichum graminicola. Plants (Basel, Switzerland) 11
  3. Arya GC, Srivastava DA, Manasherova E, Prusky DB, Elad Y, Frenkel O, Harel A (2022) BcHnm1, a predicted choline transporter, modulates conidial germination and virulence in Botrytis cinerea. Fungal Genet Biol 158:103653 [DOI: 10.1016/j.fgb.2021.103653]
  4. Balakrishnan R, de Silva RT, Hwa T, Cremer J (2021) Suboptimal resource allocation in changing environments constrains response and growth in bacteria. Mol Syst Biol 17:e10597 [DOI: 10.15252/msb.202110597]
  5. Bordoh PK, Ali A, Dickinson M, Siddiqui Y, Romanazzi G (2020) A review on the management of postharvest anthracnose in dragon fruits caused by Colletotrichum spp. Crop Prot 130:105067 [DOI: 10.1016/j.cropro.2019.105067]
  6. Boukaew S, Yossan S, Cheirsilp B, Prasertsan P (2022) Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea. Journal of Basic Microbiology
  7. Bühlmann CH, Mickan BS, Tait S, Batstone DJ, Mercer GD, Bahri PA (2022) Lactic acid from mixed food waste fermentation using an adapted inoculum: influence of pH and temperature regulation on yield and product spectrum. J Clean Prod 373:133716 [DOI: 10.1016/j.jclepro.2022.133716]
  8. Caruso DJ, Palombo EA, Moulton SE, Zaferanloo B (2022) Exploring the promise of endophytic fungi: a review of novel antimicrobial compounds. Microorganisms 10:1990 [DOI: 10.3390/microorganisms10101990]
  9. Ciobanu CP, Blaga AC, Froidevaux R, Krier F, Galaction AI, Cascaval D (2020): Enhanced growth and β-galactosidase production on Escherichia coli using oxygen vectors. 3 Biotech 10, 1–10
  10. Cruz-Martin M, Mena E, Acosta-Suarez M, Pichardo T, Rodriguez E, Alvarado-Capo Y (2020) Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet). Braz J Microbiol 51:265–269 [DOI: 10.1007/s42770-019-00136-9]
  11. Dey A, Bokka V, Sen S (2020) Dependence of bacterial growth rate on dynamic temperature changes. IET Syst Biol 14:68–74 [DOI: 10.1049/iet-syb.2018.5125]
  12. Fu T, Islam MS, Ali M, Wu J, Dong W (2020) Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 10:13346 [DOI: 10.1038/s41598-020-70314-5]
  13. Guo H, Qiao B, Ji X, Wang X, Zhu E (2020) Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alteraria alternata. Postharvest Biol Technol 161:110883 [DOI: 10.1016/j.postharvbio.2019.04.009]
  14. Guo S, Zhang J-w, Dong L-h, Li X, Asif M, Guo Q-g, Jiang W-j, Ma P, Zhang L-q (2019): Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage. Biological Control 136
  15. Gur L, Levy K, Farber A, Frenkel O, Reuveni M (2021) Delayed development of resistance to QoI fungicide in Venturia inaequalis in Israeli apple orchards and improved apple scab management using fungicide mixtures. Agronomy 11:396 [DOI: 10.3390/agronomy11020396]
  16. Han X, Shen D, Xiong Q, Bao B, Zhang W, Dai T, Zhao Y, Borriss R, Fan B (2021) The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl Environ Microbiol 87:e0160121 [DOI: 10.1128/AEM.01601-21]
  17. Handayani N, Sujuti H, Permatasari N, Rudijanto A (2019): Niacin regulates glucose reactive protein (GRP78), protein carbonyl content (PCC) and malondialdehyde (MDA) in the hyperglycemic human lens epithelial cells. Pharmacognosy J 11
  18. Hassan A, Ali S, Farooq MA, Tahir HM, Awan MU, Mughal TA (2020) Optimization of enhanced microbial production of zinc bacitracin by submerged fermentation technology. J Basic Microbiol 60:585–599 [DOI: 10.1002/jobm.201900694]
  19. Hjellnes V, Rustad T, Jensen I-J, Eiken E, Pettersen SM, Falch E (2021): Ultrafiltration of saithe (Pollachius virens) protein hydrolysates and its effect on antioxidative activity. Catalysts 11
  20. Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C (2022) AdpA, a developmental regulator, promotes ε-poly-L-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 21:1–20 [DOI: 10.1186/s12934-022-01785-6]
  21. Jiang Y-q, Lin J-p (2022) Recent progress in strategies for steroid production in yeasts. World J Microbiol Biotechnol 38:1–14 [DOI: 10.1007/s11274-022-03276-7]
  22. Karimi F, Hamidian Y, Behrouzifar F, Mostafazadeh R, Ghorbani-HasanSaraei A, Alizadeh M, Mortazavi S-M, Janbazi M, Asrami PN (2022) An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem Toxicol 164:113053 [DOI: 10.1016/j.fct.2022.113053]
  23. Kim G, Xu Y, Zhang J, Sui Z, Corke H (2021) Antibacterial activity and multi-targeting mechanism of dehydrocorydaline from Corydalis turtschaninovii Bess. against Listeria monocytogenes. Frontiers in microbiology, 3957
  24. Li X, Zhang M, Qi D, Zhou D, Qi C, Li C, Liu S, Xiang D, Zhang L, Xie J (2021) Biocontrol ability and mechanism of a broad-spectrum antifungal strain Bacillus safensis sp. QN1NO-4 against strawberry anthracnose caused by Colletotrichum fragariae. Frontiers in microbiology 12
  25. Liang J-P, Xue Z-Q, Yang Z-Y, Chai Z, Niu J-P, Shi Z-Y (2021) Effects of microbial organic fertilizers on Astragalus membranaceus growth and rhizosphere microbial community. Ann Microbiol 71:1–15 [DOI: 10.1186/s13213-021-01623-x]
  26. Liu W, Yuan L, Wang S (2020) Recent progress in the discovery of antifungal agents targeting the cell wall. J Med Chem 63:12429–12459 [DOI: 10.1021/acs.jmedchem.0c00748]
  27. Liu X, Jiang X, Sun H, Du J, Luo Y, Huang J, Qin L (2022) Evaluating the mode of antifungal action of heat-stable antifungal factor (HSAF) in Neurospora crassa. J Fungi 8:252 [DOI: 10.3390/jof8030252]
  28. Liu Z, Huang H, Qi M, Wang X, Adebanjo OO, Lu Z (2019) Metabolite cross-feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the biodegradation of tetrahydrofuran under pH stress. Appl Environ Microbiol 85:e01196-e1219 [DOI: 10.1128/AEM.01196-19]
  29. Ma T, Yang C, Cai F, Cui L, Wang Y (2022) Optimizing fermentation of Bacillus amyloliquefaciens 3–5 and determining disease suppression and growth in cucumber (Cucumis sativus). Biol Control 176:105070 [DOI: 10.1016/j.biocontrol.2022.105070]
  30. Mathipa-Mdakane MG, Thantsha MS (2022) Lacticaseibacillus rhamnosus: a suitable candidate for the construction of novel bioengineered probiotic strains for targeted pathogen control. Foods 11:785 [DOI: 10.3390/foods11060785]
  31. Mikulášek K, Konečná H, Potěšil D, Holánková R, Havliš J, Zdráhal Z (2021) SP3 protocol for proteomic plant sample preparation prior LC-MS/MS. Front Plant Sci 12:635550 [DOI: 10.3389/fpls.2021.635550]
  32. Mota HR, Oliveira JT, Martins TF, Vasconcelos IM, Costa HP, Neres DP, Silva FD, Souza PF (2022) Chitinase from the latex of Ficus benjamina L. displays antifungal activity by inducing ROS generation and structural damage to the fungal cell wall and plasma membrane. Protein Pept Lett 29:869–881 [DOI: 10.2174/0929866529666220903091107]
  33. Mousavi S, Sheikhzadeh N, Tayefi-Nasrabadi H, Alizadeh-Salteh S, KhaniOushani A, Firouzamandi M, Mardani K (2020) Administration of grape (Vitis vinifera) seed extract to rainbow trout (Oncorhynchus mykiss) modulates growth performance, some biochemical parameters, and antioxidant-relevant gene expression. Fish Physiol Biochem 46:777–786 [DOI: 10.1007/s10695-019-00716-4]
  34. Naets M, Bossuyt L, De Coninck B, Keulemans W, Geeraerd A (2020) Exploratory study on postharvest pathogens of ‘Nicoter’ apple in Flanders (Belgium). Scientia Horticulturae 260
  35. Pang Y, Yang J, Chen X, Jia Y, Li T, Jin J, Liu H, Jiang L, Hao Y, Zhang H, Xie Y (2021) An antifungal chitosanase from Bacillus subtilis SH21. Molecules 26
  36. Ren J, He W, Li C, He S, Niu D (2019) Purification and identification of a novel antifungal protein from Bacillus subtilis XB-1. World J Microbiol Biotechnol 35:150 [DOI: 10.1007/s11274-019-2726-6]
  37. Rismondo J, Schulz LM (2021) Not just Transporters: alternative functions of ABC transporters in Bacillus subtilis and listeria monocytogenes. Microorganisms 9:163 [DOI: 10.3390/microorganisms9010163]
  38. Rodríguez Estévez M, Gummerlich N, Myronovskyi M, Zapp J, Luzhetskyy A (2020) Benzanthric acid, a novel metabolite from Streptomyces albus Del14 expressing the nybomycin gene cluster. Front Chem 7:896 [DOI: 10.3389/fchem.2019.00896]
  39. Samaras A, Karaoglanidis GS, Tzelepis G (2021) Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host. Microbiol Res 248:126752 [DOI: 10.1016/j.micres.2021.126752]
  40. Schön T, Werngren J, Machado D, Borroni E, Wijkander M, Lina G, Mouton J, Matuschek E, Kahlmeter G, Giske C (2021): Multicentre testing of the EUCAST broth microdilution reference method for MIC determination on Mycobacterium tuberculosis. Clinical Microbiology and Infection 27, 288. e1–288. e4
  41. Shah ZA, Dar MA, Dar EA, Obianefo CA, Bhat AH, Ali MT, El-Sharnouby M, Shukry M, Kesba H, Sayed S (2022) Sustainable fruit growing: an analysis of differences in apple productivity in the Indian State of Jammu and Kashmir. Sustainability 14:14544 [DOI: 10.3390/su142114544]
  42. Steinke K, Mohite OS, Weber T, Kovacs AT (2021): Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. mSystems 6
  43. Tao A, Feng X, Sheng Y, Song Z (2022) Optimization of the Artemisia polysaccharide fermentation process by Aspergillus niger. Front Nutr 9:842766 [DOI: 10.3389/fnut.2022.842766]
  44. Toth L, Varadi G, Boros E, Borics A, Ficze H, Nagy I, Toth GK, Rakhely G, Marx F, Galgoczy L (2020) Biofungicidal potential of Neosartorya (Aspergillus) Fischeri antifungal protein NFAP and novel synthetic gamma-core peptides. Front Microbiol 11:820 [DOI: 10.3389/fmicb.2020.00820]
  45. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319 [DOI: 10.1038/nprot.2016.136]
  46. Volynchikova E, Kim KD (2022) Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology, 1–25
  47. Wahab S, Muzammil K, Nasir N, Khan MS, Ahmad MF, Khalid M, Ahmad W, Dawria A, Reddy LKV, Busayli AM (2022) Advancement and new trends in analysis of pesticide residues in food: a comprehensive review. Plants 11:1106 [DOI: 10.3390/plants11091106]
  48. Xue Y, Yang M, Li S, Li Z, Liu H, Guo Q, Wang C (2019) The antibiotic activity and mechanisms of active metabolites (Streptomyces alboflavus TD-1) against Ralstonia solanacearum. Biotech Lett 41:1213–1222 [DOI: 10.1007/s10529-019-02726-x]
  49. Yan F, Ye X, Wang P, Chen S, Lin H (2021) Isolation, purification, gene cloning and expression of antifungal protein from Bacillus amyloliquefaciens MG-3. Food Chem 349:129130 [DOI: 10.1016/j.foodchem.2021.129130]
  50. Yang J, Zhu Q, Xu F, Yang M, Du H, Bian X, Lu Z, Lu Y, Lu F (2021) Genome mining, heterologous expression, antibacterial and antioxidant activities of lipoamides and amicoumacins from compost-associated Bacillus subtilis fmb60. Molecules 26:1892 [DOI: 10.3390/molecules26071892]
  51. Yin C, Hagerty CH, Paulitz TC (2022): Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen. Frontiers in Microbiology, 3367
  52. Zhang F, Cheng W (2022) The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 11:1215 [DOI: 10.3390/antibiotics11091215]
  53. Zhang X, Li B, Zhang Z, Chen Y, Tian S (2020) Antagonistic yeasts: a promising alternative to chemical fungicides for controlling postharvest decay of fruit. J Fungi (Basel) 6
  54. Zhang Z, Liu X, Shen Z, Chen Y, Chen C, SiTu Y, Tang C, Jiang T (2022) Isoflavaspidic acid PB extracted from Dryopteris fragrans (L.) Schott inhibits Trichophyton rubrum growth via membrane permeability alternation and ergosterol biosynthesis disruption. BioMed Research International 2022
  55. Zhao M, Liu D, Liang Z, Huang K, Wu X (2022): Antagonistic activity of Bacillus subtilis CW14 and its β-glucanase against Aspergillus ochraceus. Food Control 131
  56. Zheng X, Zheng L, Xia F, Li J, Zhou W, Yuan L, Rao S, Yang Z (2023) Biological control of blue mold rot in apple by Kluyveromyces marxianus XZ1 and the possible mechanisms of action. Postharvest Biol Technol 196:112179 [DOI: 10.1016/j.postharvbio.2022.112179]

Grants

  1. U1803332/National Natural Science Foundation of China
  2. 2021NY-141/Shanxi Provincial Key Research and Development Project
  3. 21JK0643/Scientific Research Plan Projects of Shaanxi Education Department

MeSH Term

Bacillus subtilis
Antifungal Agents
Malus
Fungi
Fruit
Plant Diseases

Chemicals

Antifungal Agents

Word Cloud

Created with Highcharts 10.0.0proteinantifungalsubtilisSL-44Bacillusgloeosporioidescontrolmechanismappleanthracnoseisolatedpurifiedplantpathogenicfungioptimalfermentationconditionsoptimizednovelmolecularweight42 kDamaydisruptcellwallstructureCAntifungalApplefruitfungaldiseasecurrentlyrecognizedoneseverethreatsapplesworldwidestudyidentifiedappliedColletotrichumantagonisticexperimentshowedexcellentbroadspectrumfollows:initialpH7inoculumvolume2%rotationalspeed180r/minyieldincreased4583%comparedcrudeNHSOprecipitationDEAE-SepharoseFastFlowSephadexG-100columnchromatographyLC-MSanalyzedlikelyrevealedfunctionactionAdditionallysignificantlyalleviatedsizelesion70%infectionprotectiontestconclusionremarkablepotentialdevelopingfungicidesbiologicalHIGHLIGHTS:1Bbroad-spectrumantagonism2extracting34Isolationpurificationidentificationproducedanti-fungalresistanceAgriculturalapplicationsBiological

Similar Articles

Cited By