Animal Inflammation-Based Models of Neuropsychiatric Disorders.

Konstantin A Demin, Konstantin A Zabegalov, Tatiana O Kolesnikova, David S Galstyan, Yuriy M H B Kositsyn, Fabiano V Costa, Murilo S de Abreu, Allan V Kalueff
Author Information
  1. Konstantin A Demin: Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
  2. Konstantin A Zabegalov: Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
  3. Tatiana O Kolesnikova: Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
  4. David S Galstyan: Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
  5. Yuriy M H B Kositsyn: Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
  6. Fabiano V Costa: Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
  7. Murilo S de Abreu: Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
  8. Allan V Kalueff: Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.

Abstract

Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of "active" glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.

Keywords

References

  1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet. 1997;349(9064):1498–504. [PMID: 9167458]
  2. Insel TR, Charney DS. Research on major depression: strategies and priorities. JAMA. 2003;289(23):3167–8. [PMID: 12813123]
  3. Rapaport MH, et al. Quality-of-life impairment in depressive and anxiety disorders. Am J Psychiatr. 2005;162(6):1171–8. [PMID: 15930066]
  4. Stein MB, et al. Functional impact and health utility of anxiety disorders in primary care outpatients. Med Care. 2005;43:1164–70. [PMID: 16299426]
  5. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiat. 2015;72(4):334–41. [DOI: 10.1001/jamapsychiatry.2014.2502]
  6. Réus GZ, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54. [PMID: 25981208]
  7. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67. [PMID: 29752710]
  8. Najjar S, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10(1):1–24. [DOI: 10.1186/1742-2094-10-43]
  9. Modabbernia A, et al. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74(1):15–25. [PMID: 23419545]
  10. Dargél AA, et al. C-reactive protein alterations in bipolar disorder: a meta-analysis. J Clin Psychiatry. 2015;76(2):3919. [DOI: 10.4088/JCP.14r09007]
  11. Köhler CA, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87. [PMID: 28122130]
  12. Inoshita M, et al. A significant causal association between C-reactive protein levels and schizophrenia. Sci Rep. 2016;6(1):1–8. [DOI: 10.1038/srep26105]
  13. Goldsmith D, Rapaport M, Miller B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709. [PMID: 26903267]
  14. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44. [PMID: 23870425]
  15. Miller BJ, et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71. [PMID: 21641581]
  16. Khandaker GM, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70. [PMID: 26359903]
  17. do Prado CH, et al. Reduced regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology. 2013;38(5):667–76. [PMID: 22989476]
  18. Barbosa IG, et al. Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol. 2015;18(1):pyu021. [DOI: 10.1093/ijnp/pyu021]
  19. Dantzer R, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56. [PMID: 18073775]
  20. Harrison NA, et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407–14. [PMID: 19423079]
  21. Eisenberger NI, et al. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68(8):748–54. [PMID: 20719303]
  22. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62. [PMID: 21918508]
  23. Cattaneo A, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(3):377–85. [PMID: 22990943]
  24. Kalueff A, Wheaton M, Murphy D. What's wrong with my mouse model?: advances and strategies in animal modeling of anxiety and depression. Behav Brain Res. 2007;179(1):1–18. [PMID: 17306892]
  25. Crawley JN. What’s wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. Hoboken: John Wiley & Sons; 2007. [DOI: 10.1002/0470119055]
  26. Wieck A, Andersen SL, Brenhouse HC. Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun. 2013;28:218–26. [PMID: 23207107]
  27. Mutlu O, et al. Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci. 2012;91(25–26):1252–62. [PMID: 23069580]
  28. Hanke M, et al. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun. 2012;26(7):1150–9. [PMID: 22841997]
  29. Carboni L, et al. Early-life stress and antidepressants modulate peripheral biomarkers in a gene–environment rat model of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(6):1037–48. [DOI: 10.1016/j.pnpbp.2010.05.019]
  30. Yuan N, et al. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl Psychiatry. 2019;9(1):1–13. [DOI: 10.1038/s41398-019-0570-y]
  31. Furtado M, Katzman MA. Examining the role of neuroinflammation in major depression. Psychiatry Res. 2015;229(1–2):27–36. [PMID: 26187338]
  32. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229. [PMID: 23644052]
  33. Lotrich FE. Inflammatory cytokine-associated depression. Brain Res. 2015;1617:113–25. [PMID: 25003554]
  34. de Araujo Boleti AP, et al. Neuroinflammation: an overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochem Int. 2020;136:104714. [PMID: 32165170]
  35. Ma L, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discovery. 2017;12(10):995–1009. [DOI: 10.1080/17460441.2017.1362385]
  36. Sellgren CM, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22(3):374–85. [PMID: 30718903]
  37. Wang M, Zhang L, Gage FH. Microglia, complement and schizophrenia. Nat Neurosci. 2019;22(3):333–4. [PMID: 30796420]
  38. Lee J-S, et al. Antidepressant-like activity of myelophil via attenuation of microglial-mediated neuroinflammation in mice undergoing unpredictable chronic mild stress. Front Pharmacol. 2019;10:683. [PMID: 31263417]
  39. Shintani F, et al. Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci. 1993;13(8):3574–81. [PMID: 8393485]
  40. de Paiva VN, et al. Prostaglandins mediate depressive-like behaviour induced by endotoxin in mice. Behav Brain Res. 2010;215(1):146–51. [PMID: 20654654]
  41. Norden DM, et al. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016;64(2):300–16. [PMID: 26470014]
  42. Enayati M, et al. Maternal infection during late pregnancy increases anxiety—and depression-like behaviors with increasing age in male offspring. Brain Res Bull. 2012;87(2–3):295–302. [PMID: 21893170]
  43. Christian LM, et al. Depressive symptoms are associated with elevated serum proinflammatory cytokines among pregnant women. Brain Behav Immun. 2009;23(6):750–4. [PMID: 19258033]
  44. Hodes GE, et al. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–93. [PMID: 26404713]
  45. Kempuraj D, et al. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003. [PMID: 28127589]
  46. Couch Y, et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun. 2013;29:136–46. [PMID: 23305936]
  47. Zheng ZH, et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun. 2021;91:505–18. [PMID: 33161163]
  48. Gomes JAS, et al. High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice. J Nutr Biochem. 2020;77:108317. [PMID: 32004874]
  49. Wang YL, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15(1):21. [PMID: 29343269]
  50. Zakaria R, et al. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res. 2017;66(4):553–65. [PMID: 28406691]
  51. Hou Y, et al. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proc Natl Acad Sci U S A. 2021;118(37):e2011226118. [PMID: 34497121]
  52. Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013;21:591–643.
  53. Atalar EG, Uzbay T, Karakas S. Modeling symptoms of attention-deficit hyperactivity disorder in a rat model of fetal alcohol syndrome. Alcohol Alcohol. 2016;51(6):684–90. [PMID: 27117236]
  54. Rojas-Mayorquin AE, Padilla-Velarde E, Ortuno-Sahagun D. Prenatal alcohol exposure in rodents as a promising model for the study of ADHD molecular basis. Front Neurosci. 2016;10:565. [PMID: 28018163]
  55. Leth-Steensen C, Elbaz ZK, Douglas VI. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. 2000;104(2):167–90. [DOI: 10.1016/S0001-6918(00)00019-6]
  56. Hausknecht KA, et al. Prenatal alcohol exposure causes attention deficits in male rats. Behav Neurosci. 2005;119(1):302. [PMID: 15727534]
  57. Gilbertson RJ, Barron S. Neonatal ethanol and nicotine exposure causes locomotor activity changes in preweanling animals. Pharmacol Biochem Behav. 2005;81(1):54–64. [PMID: 15894064]
  58. Girard T, et al. Early postnatal ethanol exposure has long-term effects on the performance of male rats in a delayed matching-to-place task in the Morris water maze. Alcohol Clin Exp Res. 2000;24(3):300–6. [PMID: 10776666]
  59. Reyes E, Wolfe J, Savage DD. The effects of prenatal alcohol exposure on radial arm maze performance in adult rats. Physiol Behav. 1989;46(1):45–8. [PMID: 2813555]
  60. Nagahara AH, Handa RJ. Fetal alcohol exposure produces delay-dependent memory deficits in juvenile and adult rats. Alcohol Clin Exp Res. 1997;21(4):710–5. [PMID: 9194928]
  61. Sharma N, et al. Papaverine ameliorates prenatal alcohol-induced experimental attention deficit hyperactivity disorder by regulating neuronal function, inflammation, and oxidative stress. Int J Dev Neurosci. 2021;81(1):71–81. [PMID: 33175424]
  62. Kelley KW, Kent S. The legacy of sickness behaviors. Front Psychiatry. 2020;11:607269. [PMID: 33343432]
  63. Maes M, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10(1):66. [PMID: 22747645]
  64. Lasselin J, et al. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev. 2020;115:15–24. [PMID: 32433924]
  65. Anforth HR, et al. Biological activity and brain actions of recombinant rat interleukin-1alpha and interleukin-1beta. Eur Cytokine Netw. 1998;9(3):279–88. [PMID: 9831177]
  66. Meshalkina DA, et al. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim. 2017;46(10):378–87. [DOI: 10.1038/laban.1345]
  67. Cofer ZC, Matthews RP. Zebrafish models of biliary atresia and other infantile cholestatic diseases. Curr Pathobiol Rep. 2014;2(2):75–83. [DOI: 10.1007/s40139-014-0040-4]
  68. Gong Z, et al. The zebrafish model for liver carcinogenesis. In: Molecular genetics of liver neoplasia. Cham: Springer; 2010. p. 197–218.
  69. Aleström P, Winther-Larsen HC. Zebrafish offer aquaculture research their services. In: Genomics in aquaculture. London: Elsevier; 2016. p. 165–94.
  70. Geisler R, et al. Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Rep. 2017;18(1):1–2. [PMID: 27979973]
  71. Hudson-Shore M. Statistics of scientific procedures on living animals Great Britain 2015—highlighting an ongoing upward trend in animal use and missed opportunities for reduction. Altern Lab Anim. 2016;44(6):569–80. [PMID: 28094537]
  72. Stewart AM, et al. Molecular psychiatry of zebrafish. Mol Psychiatry. 2015;20(1):2. [PMID: 25349164]
  73. Stewart AM, et al. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264–78. [PMID: 24726051]
  74. Gerlai R. Using zebrafish to unravel the genetics of complex brain disorders. Curr Top Behav Neurosci. 2011;12:3–24. [DOI: 10.1007/7854_2011_180]
  75. Le Bras A. Enhancing gene editing in zebrafish. Lab Animal. 2019;48:234. [DOI: 10.1038/s41684-019-0359-x]
  76. Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. [PMID: 23594743]
  77. Grunwald DJ, Eisen JS. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet. 2002;3(9):717–24. [PMID: 12209146]
  78. Kalueff AV, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70–86. [PMID: 23590400]
  79. Mojzesz M, et al. Tilapia Lake virus-induced neuroinflammation in zebrafish: microglia activation and sickness behavior. Front Immunol. 2021;12:760882. [PMID: 34707620]
  80. Paudel YN, Othman I, Shaikh MF. Anti-high mobility group box-1 monoclonal antibody attenuates seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 2020;11:613009. [PMID: 33732146]
  81. Song C, et al. Modeling consequences of prolonged strong unpredictable stress in zebrafish: complex effects on behavior and physiology. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:384–94. [DOI: 10.1016/j.pnpbp.2017.08.021]
  82. Pereira TC, Campos MM, Bogo MR. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol. 2016;36(7):876–85. [PMID: 26888422]
  83. Demin KA, et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep. 2020;10(1):1–20. [DOI: 10.1038/s41598-020-75855-3]
  84. Yang L, et al. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav Brain Res. 2020;389:112644. [PMID: 32344037]
  85. Demin KA, et al. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress. 2021;24(1):1–18. [PMID: 32036720]
  86. Demin KA, et al. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods. 2020;337:108637. [PMID: 32081675]
  87. Marcon M, et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology. 2016;233(21):3815–24. [PMID: 27562666]
  88. Zabegalov KN, et al. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull. 2021;166:44–53. [PMID: 33027679]
  89. Becker CG, et al. L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci. 2004;24(36):7837–42. [PMID: 15356195]
  90. Dias DO, Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol. 2018;68:561–70. [PMID: 29428230]
  91. Reimer MM, et al. Motor neuron regeneration in adult zebrafish. J Neurosci. 2008;28(34):8510–6. [PMID: 18716209]
  92. Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):1–13. [DOI: 10.1038/s41420-018-0109-7]
  93. Kishimoto N, Shimizu K, Sawamoto K. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 2012;5(2):200–9. [PMID: 22028327]
  94. Cacialli P, Palladino A, Lucini C. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish. Neural Regen Res. 2018;13(6):941. [PMID: 29926814]
  95. Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75. [PMID: 21948373]
  96. Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today. 2020;25(12):2201–11. [PMID: 33035664]
  97. Xie Y, Meijer AH, Schaaf MJM. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Front Cell Dev Biol. 2021;8:620984. [PMID: 33520995]
  98. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2(Suppl 2)):136–53. [PMID: 26990767]
  99. Chiu C-C, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49. [PMID: 27382003]
  100. Au-Crilly S, et al. Using zebrafish larvae to study the pathological consequences of hemorrhagic stroke. JoVE. 2019;148:e59716.
  101. Crilly S, et al. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res. 2018;7:1617. [PMID: 30473780]
  102. Kyritsis N, et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science. 2012;338(6112):1353–6. [PMID: 23138980]
  103. Kanagaraj P, et al. Microglia stimulate zebrafish brain repair via a specific inflammatory cascade. bioRxiv. 2020; p. 2020.10.08.330662.
  104. Lee S-B, et al. Analysis of zebrafish (Danio rerio) behavior in response to bacterial infection using a self-organizing map. BMC Vet Res. 2015;11(1):269. [PMID: 26497220]
  105. Paudel YN, Othman I, Shaikh MF. Anti-high mobility group Box-1 monoclonal antibody attenuates seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 2021;11:613009. [PMID: 33732146]
  106. Lee Y, et al. Hypoxia-induced neuroinflammation and learning-memory impairments in adult zebrafish are suppressed by glucosamine. Mol Neurobiol. 2018;55(11):8738–53. [PMID: 29589284]
  107. Paudel YN, et al. Pilocarpine induced behavioral and biochemical alterations in chronic seizure-like condition in adult zebrafish. Int J Mol Sci. 2020;21(7):2492. [PMID: 32260203]
  108. Forn-Cuní G, et al. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep. 2017;7(1):41905. [PMID: 28157230]
  109. Hong J-M, et al. Anti-Inflammatory effects of Antarctic Lichen Umbilicaria antarctica methanol extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells and zebrafish model. Biomed Res Int. 2021;2021:8812090. [PMID: 33644231]
  110. Lefebvre KA, et al. Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. Toxicol Sci. 2009;107(1):65–77. [PMID: 18936300]
  111. Kirsten K, et al. Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress. 2021;24(1):107–12. [PMID: 32013653]
  112. Boswell M, et al. Deconvoluting wavelengths leading to fluorescent light induced inflammation and cellular stress in Zebrafish (Danio rerio). Sci Rep. 2020;10(1):3321. [PMID: 32094353]
  113. de Abreu MS, et al. Towards modeling anhedonia and its treatment in zebrafish. Int J Neuropsychopharmacol. 2021;25(4):293–306. [>PMCID: ]
  114. Dunn AJ, Swiergiel AH. Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav. 2005;81(3):688–93. [PMID: 15982728]
  115. Zeng J, et al. Interferon-α exacerbates neuropsychiatric phenotypes in lupus-prone mice. Arthritis Res Ther. 2019;21(1):205. [PMID: 31481114]
  116. Demin KA, et al. Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Sci Rep. 2021;11(1):14289. [PMID: 34253753]

MeSH Term

Animals
Zebrafish
Inflammation
Brain
Models, Animal
Neuroglia
Microglia

Word Cloud

Created with Highcharts 10.0.0psychiatricdisordersmodelsinflammationanimaltranslationalbrainalsovariousproinflammatoryroleorganismsAnimalMountingevidencelinkscentralsystemicExperimentalimportanttoolsbiopsychiatryresearchCNSdrugdiscoveryCurrentexperimentaltypicallyinvolvingrodentscontinuerevealsharedfundamentalpathologicalpathwaysbiomarkersunderlyingpathogeneticlinkillnessesneuroinflammationRecentdatashowfactorscan alterneurochemistrymodulatinglevelsneurohormonesneurotrophinsneuronsmicroglia"active"gliareleasingwiderangecytokinesimplicatesglialcellsdiscussrecentinflammation-relatedfocusingperspectivesusenovel promisingmodelzebrafishbetterunderstandevolutionallyconservativeneuropsychiatricconditionsInflammation-BasedModelsNeuropsychiatricDisordersModelNeurodegenerationNeuroinflammationRodentsZebrafish

Similar Articles

Cited By