Sihui Zhu, Yu'e Zhang, Lucy Copsy, Qianqian Han, Dongfeng Zheng, Enrico Coen, Yongbiao Xue
The genus Antirrhinum has been used as a model to study self-incompatibility extensively. The multi-allelic S-locus, carrying a pistil S-RNase and dozens of S-locus F-box (SLF) genes, underlies the genetic control of self-incompatibility (SI) in Antirrhinum hispanicum. However, there have been limited studies on the genomic organization of the S-locus supergene due to a lack of high-quality genomic data. Here, we present the chromosome-level reference and haplotype-resolved genome assemblies of a self-incompatible A. hispanicum line, AhS7S8. For the first time, 2 complete A. hispanicum S-haplotypes spanning ∼1.2 Mb and containing a total of 32 SLFs were reconstructed, whereas most of the SLFs derived from retroelement-mediated proximal or tandem duplication ∼122 Mya. Back then, the S-RNase gene and incipient SLFs came into linkage to form the pro-type of type-1 S-locus in the common ancestor of eudicots. Furthermore, we detected a pleiotropic cis-transcription factor (TF) associated with regulating the expression of SLFs, and two miRNAs may control the expression of this TF. Interspecific S-locus and intraspecific S-haplotype comparisons revealed the dynamic nature and polymorphism of the S-locus supergene mediated by continuous gene duplication, segmental translocation or loss, and TE-mediated transposition events. Our data provide an excellent resource for future research on the evolutionary studies of the S-RNase-based self-incompatibility system.
Nucleic Acids Res. 2018 Nov 30;46(21):e126
[PMID:
30107434]
Nature. 1989 Dec 21-28;342(6252):955-7
[PMID:
2594090]
Mol Gen Genet. 1996 Mar 20;250(5):547-57
[PMID:
8676858]
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92
[PMID:
31701148]
Mol Biol Evol. 1989 Sep;6(5):526-38
[PMID:
2677599]
Heredity (Edinb). 2010 Jul;105(1):4-13
[PMID:
20461105]
Planta. 2006 Jul;224(2):233-45
[PMID:
16794841]
Genome Biol. 2012 Jan 26;13(1):R3
[PMID:
22280555]
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4417-22
[PMID:
25831517]
Annu Rev Plant Biol. 2005;56:467-89
[PMID:
15862104]
Nat Biotechnol. 2014 Jul;32(7):656-62
[PMID:
24908277]
Gigascience. 2022 Dec 8;11:
[PMID:
36480030]
Nat Biotechnol. 2016 May;34(5):525-7
[PMID:
27043002]
Plant J. 2007 Oct;52(1):105-13
[PMID:
17672842]
Plant Physiol. 2009 Sep;151(1):3-15
[PMID:
19641029]
Theor Appl Genet. 1991 Nov;83(1):49-57
[PMID:
24202256]
Nat Plants. 2019 Feb;5(2):174-183
[PMID:
30692677]
Plant Cell. 2004 Nov;16(11):2840-7
[PMID:
15522846]
Genome Biol Evol. 2022 Jul 2;14(7):
[PMID:
35714207]
Plant Cell. 2004 Sep;16(9):2307-22
[PMID:
15308757]
Nat Plants. 2015 Jan 08;1:14005
[PMID:
27246052]
Plant J. 2020 Dec;104(5):1348-1368
[PMID:
33048387]
Nat Genet. 2020 Oct;52(10):1018-1023
[PMID:
32989320]
Trends Plant Sci. 2003 Dec;8(12):598-605
[PMID:
14659709]
Bioinformatics. 2019 Jun 1;35(12):2153-2155
[PMID:
30398564]
Bioinformatics. 2019 Nov 1;35(21):4453-4455
[PMID:
31070718]
Genetics. 2002 Oct;162(2):931-40
[PMID:
12399400]
Nature. 2003 Mar 27;422(6930):433-8
[PMID:
12660784]
Mol Biol Evol. 2002 Jun;19(6):825-9
[PMID:
12032238]
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
[PMID:
33885785]
Genome Res. 2009 Sep;19(9):1639-45
[PMID:
19541911]
Hortic Res. 2021 Nov 18;8(1):244
[PMID:
34795210]
Nat Plants. 2020 Feb;6(2):131-142
[PMID:
32055045]
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
[PMID:
28387841]
BMC Bioinformatics. 2011 Aug 04;12:323
[PMID:
21816040]
Trends Plant Sci. 2011 May;16(5):238-41
[PMID:
21306936]
Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18
[PMID:
28387199]
Bioinformatics. 2010 Jan 1;26(1):139-40
[PMID:
19910308]
Plant J. 2007 Jul;51(1):140-51
[PMID:
17521415]
J Exp Bot. 2011 Mar;62(6):1887-902
[PMID:
21172811]
NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108
[PMID:
33575650]
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13167-71
[PMID:
11698683]
Nature. 2004 May 20;429(6989):302-5
[PMID:
15152253]
Curr Opin Genet Dev. 2015 Dec;35:73-8
[PMID:
26605684]
Genome Biol. 2019 Nov 14;20(1):238
[PMID:
31727128]
PLoS Genet. 2012 Jan;8(1):e1002419
[PMID:
22242012]
Plant Mol Biol. 2002 Sep;50(1):29-42
[PMID:
12139007]
J Mol Evol. 2008 Aug;67(2):179-90
[PMID:
18626680]
Front Plant Sci. 2021 Feb 12;12:631178
[PMID:
33643359]
Bioinformatics. 2013 Jan 1;29(1):15-21
[PMID:
23104886]
PLoS One. 2013 Dec 06;8(12):e81148
[PMID:
24324667]
BMC Biol. 2022 Jun 13;20(1):139
[PMID:
35698132]
Science. 2010 Nov 5;330(6005):796-9
[PMID:
21051632]
Front Plant Sci. 2022 Aug 23;13:979988
[PMID:
36082298]
Mol Genet Genomics. 2015 Feb;290(1):365-75
[PMID:
25252890]
Sci Rep. 2021 Feb 12;11(1):3710
[PMID:
33580108]
Plant Cell. 2003 Mar;15(3):771-81
[PMID:
12615948]
Plant Cell. 1996 May;8(5):805-14
[PMID:
8672882]
Nat Plants. 2016 Sep 06;2(9):16130
[PMID:
27595657]
Genome Biol. 2019 Feb 21;20(1):38
[PMID:
30791939]
Genome Biol Evol. 2021 May 7;13(5):
[PMID:
33739390]
Mol Biol Evol. 2022 Feb 3;39(2):
[PMID:
35143659]
Nat Genet. 2016 Jan;48(1):84-8
[PMID:
26569123]
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5068-73
[PMID:
15790677]
New Phytol. 2021 Sep;231(5):2039-2049
[PMID:
34101188]
Planta. 2020 Jan 6;251(2):38
[PMID:
31907623]
Science. 2022 Jul 22;377(6604):399-405
[PMID:
35862520]
Mol Biol Evol. 2017 Dec 1;34(12):3267-3278
[PMID:
29029342]
Nat Ecol Evol. 2022 Jun;6(6):738-749
[PMID:
35484219]
Plant Cell. 2008 Sep;20(9):2286-92
[PMID:
18776062]
G3 (Bethesda). 2021 Aug 7;11(8):
[PMID:
34014319]
Plant Cell. 2014 Jul;26(7):2873-88
[PMID:
25070642]
Plant Cell. 2022 Jan 20;34(1):579-596
[PMID:
34735009]
Nature. 2009 Jun 18;459(7249):992-5
[PMID:
19483678]
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
[PMID:
15034147]
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8
[PMID:
19458158]
Science. 2008 Apr 25;320(5875):486-8
[PMID:
18436778]