The Snapdragon Genomes Reveal the Evolutionary Dynamics of the S-Locus Supergene.

Sihui Zhu, Yu'e Zhang, Lucy Copsy, Qianqian Han, Dongfeng Zheng, Enrico Coen, Yongbiao Xue
Author Information
  1. Sihui Zhu: National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. ORCID
  2. Yu'e Zhang: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. ORCID
  3. Lucy Copsy: John Innes Centre, Norwich, United Kingdom.
  4. Qianqian Han: University of Chinese Academy of Sciences, Beijing, China. ORCID
  5. Dongfeng Zheng: National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  6. Enrico Coen: John Innes Centre, Norwich, United Kingdom.
  7. Yongbiao Xue: National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. ORCID

Abstract

The genus Antirrhinum has been used as a model to study self-incompatibility extensively. The multi-allelic S-locus, carrying a pistil S-RNase and dozens of S-locus F-box (SLF) genes, underlies the genetic control of self-incompatibility (SI) in Antirrhinum hispanicum. However, there have been limited studies on the genomic organization of the S-locus supergene due to a lack of high-quality genomic data. Here, we present the chromosome-level reference and haplotype-resolved genome assemblies of a self-incompatible A. hispanicum line, AhS7S8. For the first time, 2 complete A. hispanicum S-haplotypes spanning ∼1.2 Mb and containing a total of 32 SLFs were reconstructed, whereas most of the SLFs derived from retroelement-mediated proximal or tandem duplication ∼122 Mya. Back then, the S-RNase gene and incipient SLFs came into linkage to form the pro-type of type-1 S-locus in the common ancestor of eudicots. Furthermore, we detected a pleiotropic cis-transcription factor (TF) associated with regulating the expression of SLFs, and two miRNAs may control the expression of this TF. Interspecific S-locus and intraspecific S-haplotype comparisons revealed the dynamic nature and polymorphism of the S-locus supergene mediated by continuous gene duplication, segmental translocation or loss, and TE-mediated transposition events. Our data provide an excellent resource for future research on the evolutionary studies of the S-RNase-based self-incompatibility system.

Keywords

References

  1. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  2. Nature. 1989 Dec 21-28;342(6252):955-7 [PMID: 2594090]
  3. Mol Gen Genet. 1996 Mar 20;250(5):547-57 [PMID: 8676858]
  4. Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92 [PMID: 31701148]
  5. Mol Biol Evol. 1989 Sep;6(5):526-38 [PMID: 2677599]
  6. Heredity (Edinb). 2010 Jul;105(1):4-13 [PMID: 20461105]
  7. Planta. 2006 Jul;224(2):233-45 [PMID: 16794841]
  8. Genome Biol. 2012 Jan 26;13(1):R3 [PMID: 22280555]
  9. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4417-22 [PMID: 25831517]
  10. Annu Rev Plant Biol. 2005;56:467-89 [PMID: 15862104]
  11. Nat Biotechnol. 2014 Jul;32(7):656-62 [PMID: 24908277]
  12. Gigascience. 2022 Dec 8;11: [PMID: 36480030]
  13. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  14. Plant J. 2007 Oct;52(1):105-13 [PMID: 17672842]
  15. Plant Physiol. 2009 Sep;151(1):3-15 [PMID: 19641029]
  16. Theor Appl Genet. 1991 Nov;83(1):49-57 [PMID: 24202256]
  17. Nat Plants. 2019 Feb;5(2):174-183 [PMID: 30692677]
  18. Plant Cell. 2004 Nov;16(11):2840-7 [PMID: 15522846]
  19. Genome Biol Evol. 2022 Jul 2;14(7): [PMID: 35714207]
  20. Plant Cell. 2004 Sep;16(9):2307-22 [PMID: 15308757]
  21. Nat Plants. 2015 Jan 08;1:14005 [PMID: 27246052]
  22. Plant J. 2020 Dec;104(5):1348-1368 [PMID: 33048387]
  23. Nat Genet. 2020 Oct;52(10):1018-1023 [PMID: 32989320]
  24. Trends Plant Sci. 2003 Dec;8(12):598-605 [PMID: 14659709]
  25. Bioinformatics. 2019 Jun 1;35(12):2153-2155 [PMID: 30398564]
  26. Bioinformatics. 2019 Nov 1;35(21):4453-4455 [PMID: 31070718]
  27. Genetics. 2002 Oct;162(2):931-40 [PMID: 12399400]
  28. Nature. 2003 Mar 27;422(6930):433-8 [PMID: 12660784]
  29. Mol Biol Evol. 2002 Jun;19(6):825-9 [PMID: 12032238]
  30. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  31. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  32. Hortic Res. 2021 Nov 18;8(1):244 [PMID: 34795210]
  33. Nat Plants. 2020 Feb;6(2):131-142 [PMID: 32055045]
  34. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  35. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  36. Trends Plant Sci. 2011 May;16(5):238-41 [PMID: 21306936]
  37. Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18 [PMID: 28387199]
  38. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  39. Plant J. 2007 Jul;51(1):140-51 [PMID: 17521415]
  40. J Exp Bot. 2011 Mar;62(6):1887-902 [PMID: 21172811]
  41. NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
  42. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13167-71 [PMID: 11698683]
  43. Nature. 2004 May 20;429(6989):302-5 [PMID: 15152253]
  44. Curr Opin Genet Dev. 2015 Dec;35:73-8 [PMID: 26605684]
  45. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  46. PLoS Genet. 2012 Jan;8(1):e1002419 [PMID: 22242012]
  47. Plant Mol Biol. 2002 Sep;50(1):29-42 [PMID: 12139007]
  48. J Mol Evol. 2008 Aug;67(2):179-90 [PMID: 18626680]
  49. Front Plant Sci. 2021 Feb 12;12:631178 [PMID: 33643359]
  50. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  51. PLoS One. 2013 Dec 06;8(12):e81148 [PMID: 24324667]
  52. BMC Biol. 2022 Jun 13;20(1):139 [PMID: 35698132]
  53. Science. 2010 Nov 5;330(6005):796-9 [PMID: 21051632]
  54. Front Plant Sci. 2022 Aug 23;13:979988 [PMID: 36082298]
  55. Mol Genet Genomics. 2015 Feb;290(1):365-75 [PMID: 25252890]
  56. Sci Rep. 2021 Feb 12;11(1):3710 [PMID: 33580108]
  57. Plant Cell. 2003 Mar;15(3):771-81 [PMID: 12615948]
  58. Plant Cell. 1996 May;8(5):805-14 [PMID: 8672882]
  59. Nat Plants. 2016 Sep 06;2(9):16130 [PMID: 27595657]
  60. Genome Biol. 2019 Feb 21;20(1):38 [PMID: 30791939]
  61. Genome Biol Evol. 2021 May 7;13(5): [PMID: 33739390]
  62. Mol Biol Evol. 2022 Feb 3;39(2): [PMID: 35143659]
  63. Nat Genet. 2016 Jan;48(1):84-8 [PMID: 26569123]
  64. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5068-73 [PMID: 15790677]
  65. New Phytol. 2021 Sep;231(5):2039-2049 [PMID: 34101188]
  66. Planta. 2020 Jan 6;251(2):38 [PMID: 31907623]
  67. Science. 2022 Jul 22;377(6604):399-405 [PMID: 35862520]
  68. Mol Biol Evol. 2017 Dec 1;34(12):3267-3278 [PMID: 29029342]
  69. Nat Ecol Evol. 2022 Jun;6(6):738-749 [PMID: 35484219]
  70. Plant Cell. 2008 Sep;20(9):2286-92 [PMID: 18776062]
  71. G3 (Bethesda). 2021 Aug 7;11(8): [PMID: 34014319]
  72. Plant Cell. 2014 Jul;26(7):2873-88 [PMID: 25070642]
  73. Plant Cell. 2022 Jan 20;34(1):579-596 [PMID: 34735009]
  74. Nature. 2009 Jun 18;459(7249):992-5 [PMID: 19483678]
  75. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  76. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  77. Science. 2008 Apr 25;320(5875):486-8 [PMID: 18436778]

MeSH Term

Antirrhinum
Pollen
Biological Evolution
Ribonucleases
Plant Proteins

Chemicals

Ribonucleases
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0S-locusSLFsself-incompatibilityhispanicumsupergeneAntirrhinumS-RNasecontrolstudiesgenomicdataduplicationgeneTFexpressionevolutionarygenususedmodelstudyextensivelymulti-alleliccarryingpistildozensF-boxSLFgenesunderliesgeneticSIHoweverlimitedorganizationduelackhigh-qualitypresentchromosome-levelreferencehaplotype-resolvedgenomeassembliesself-incompatiblelineAhS7S8firsttime2completeS-haplotypesspanning∼12 Mbcontainingtotal32reconstructedwhereasderivedretroelement-mediatedproximaltandem∼122 MyaBackincipientcamelinkageformpro-typetype-1commonancestoreudicotsFurthermoredetectedpleiotropiccis-transcriptionfactorassociatedregulatingtwomiRNAsmayInterspecificintraspecificS-haplotypecomparisonsrevealeddynamicnaturepolymorphismmediatedcontinuoussegmentaltranslocationlossTE-mediatedtranspositioneventsprovideexcellentresourcefutureresearchS-RNase-basedsystemSnapdragonGenomesRevealEvolutionaryDynamicsS-LocusSupergenes-locusgenomicssnapdragon

Similar Articles

Cited By