Uncertainty quantification in mechanistic epidemic models via cross-entropy approximate Bayesian computation.

Americo Cunha, David A W Barton, Thiago G Ritto
Author Information
  1. Americo Cunha: Institute of Mathematics and Statistics, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil. ORCID
  2. David A W Barton: Faculty of Engineering, University of Bristol, Bristol, UK. ORCID
  3. Thiago G Ritto: Department of Mechanical Engineering, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil. ORCID

Abstract

This paper proposes a data-driven approximate Bayesian computation framework for parameter estimation and uncertainty quantification of epidemic models, which incorporates two novelties: (i) the identification of the initial conditions by using plausible dynamic states that are compatible with observational data; (ii) learning of an informative prior distribution for the model parameters via the cross-entropy method. The new methodology's effectiveness is illustrated with the aid of actual data from the COVID-19 epidemic in Rio de Janeiro city in Brazil, employing an ordinary differential equation-based model with a generalized SEIR mechanistic structure that includes time-dependent transmission rate, asymptomatics, and hospitalizations. A minimization problem with two cost terms (number of hospitalizations and deaths) is formulated, and twelve parameters are identified. The calibrated model provides a consistent description of the available data, able to extrapolate forecasts over a few weeks, making the proposed methodology very appealing for real-time epidemic modeling.

Keywords

References

  1. PLoS Comput Biol. 2021 Sep 8;17(9):e1009334 [PMID: 34495965]
  2. Chaos. 2022 Mar;32(3):031101 [PMID: 35364850]
  3. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  4. Nat Comput Sci. 2021 Nov;1(11):744-753 [PMID: 38217142]
  5. N Engl J Med. 2020 Jul 23;383(4):303-305 [PMID: 32412711]
  6. Sci Rep. 2022 Jan 26;12(1):1438 [PMID: 35082344]
  7. J Assoc Med Microbiol Infect Dis Can. 2020 Dec 31;5(4):223-234 [PMID: 36340059]
  8. Chaos. 2020 May;30(5):051103 [PMID: 32491876]
  9. Biology (Basel). 2020 Aug 12;9(8): [PMID: 32806613]
  10. Comput Mech. 2020;66(5):1055-1068 [PMID: 32836598]
  11. Physica D. 2020 Dec 15;414:132701 [PMID: 32863487]
  12. Comput Biol Med. 2020 Oct;125:104011 [PMID: 33091766]
  13. Nonlinear Dyn. 2020;101(3):1717-1730 [PMID: 32836817]
  14. Nonlinear Dyn. 2022;107(3):1919-1936 [PMID: 35017792]
  15. PLoS Comput Biol. 2020 Nov 18;16(11):e1007575 [PMID: 33206658]
  16. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  17. Math Biosci. 2017 May;287:42-53 [PMID: 27444577]
  18. PLoS Negl Trop Dis. 2016 May 17;10(5):e0004726 [PMID: 27186984]
  19. JAMA. 2020 Apr 28;323(16):1574-1581 [PMID: 32250385]
  20. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  21. Nonlinear Dyn. 2020;101(3):1667-1680 [PMID: 32836803]
  22. JAMA. 2020 Jun 23;323(24):2515-2516 [PMID: 32459319]
  23. Euro Surveill. 2020 Jan;25(3): [PMID: 31992388]
  24. Infect Dis Poverty. 2021 Sep 17;10(1):119 [PMID: 34535192]
  25. PLoS Comput Biol. 2013;9(1):e1002803 [PMID: 23341757]
  26. Nature. 2020 Nov;587(7835):534-535 [PMID: 33214725]
  27. Chaos. 2022 Jul;32(7):071101 [PMID: 35907723]
  28. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  29. Nat Commun. 2021 Jan 12;12(1):333 [PMID: 33436608]
  30. Infect Dis Model. 2017 Feb 04;2(2):113-127 [PMID: 29928732]
  31. Epidemics. 2019 Dec;29:100368 [PMID: 31563466]
  32. Infect Dis Model. 2020 Jan 10;5:221-232 [PMID: 32021948]
  33. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32764-32771 [PMID: 33262277]
  34. Nonlinear Dyn. 2021;106(2):1325-1346 [PMID: 33746362]
  35. PLoS One. 2020 Sep 2;15(9):e0237627 [PMID: 32877420]
  36. Nonlinear Dyn. 2021;106(2):1359-1373 [PMID: 34248281]

Word Cloud

Created with Highcharts 10.0.0epidemicquantificationdatamodelapproximateBayesiancomputationmodelstwolearningparametersviacross-entropymethodCOVID-19mechanistichospitalizationsmodelingUncertaintypaperproposesdata-drivenframeworkparameterestimationuncertaintyincorporatesnovelties:identificationinitialconditionsusingplausibledynamicstatescompatibleobservationaliiinformativepriordistributionnewmethodology'seffectivenessillustratedaidactualRiodeJaneirocityBrazilemployingordinarydifferentialequation-basedgeneralizedSEIRstructureincludestime-dependenttransmissionrateasymptomaticsminimizationproblemcosttermsnumberdeathsformulatedtwelveidentifiedcalibratedprovidesconsistentdescriptionavailableableextrapolateforecastsweeksmakingproposedmethodologyappealingreal-timeABCinferenceCross-entropyMachine

Similar Articles

Cited By