Enhanced membrane fouling control through self-forming dynamic membrane and sponge-wrapped membrane: A novel membrane bioreactor.

S Nagalakshmi, S Mariraj Mohan
Author Information
  1. S Nagalakshmi: Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India.
  2. S Mariraj Mohan: Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India. ORCID

Abstract

Membrane technology offers a wide variety of advantages in wastewater treatment, but fouling impedes its widespread applications. Hence, in this study, a novel method was tried to control membrane fouling by combining the self-forming dynamic membrane (SFDM) with a sponge-wrapped membrane bioreactor. The configuration is termed a "Novel-membrane bioreactor" (Novel-MBR). To compare the performance of Novel-MBR, a conventional membrane bioreactor (CMBR) was operated under similar operating conditions. CMBR and Novel-MBR were run consequently for 60 and 150 days, respectively. The Novel-MBR was composed of SFDMs in two compartments before a sponge-wrapped membrane in the membrane compartment. In Novel-MBR, the formation times for SFDMs on coarse (125 μm) and fine (37 μm) pore cloth filers were 43 and 13 min, respectively. The CMBR experienced more frequent fouling; the maximum fouling rate was 5.83 kPa/day. In CMBR, the membrane fouling due to cake layer resistance (6.92 × 10  m ) was high, and that alone contributed to 84% of fouling. In Novel-MBR, the fouling rate was 0.0266 kPa/day, and the cake layer resistance was 0.329 × 10  m . Also, the Novel-MBR experienced 21 times less reversible fouling and 36 times less irreversible fouling resistance than the CMBR. In Novel-MBR, the formed SFDM and the sponge wrapped on the membrane helped to reduce both reversible and irreversible fouling. With the modification tried in the present study, the Novel-MBR experienced less fouling, and the maximum transmembrane pressure at the end of 150 days of operation was 4 kPa. PRACTITIONER POINTS: CMBR experienced frequent fouling, and the maximum fouling rate was 5.83 kPa/day. Cake layer resistance was dominant in CMBR and contributed to 84% of fouling. The fouling rate of Novel-MBR at the end of the operation was 0.0266 kPa/day. Novel-MBR is expected to perform for ≈3380 days to reach the maximum TMP of 35 kPa.

Keywords

References

  1. Alsawaftah, N., Abuwatfa, W., Darwish, N., & Husseini, G. (2021). A comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis, and mitigation (Vol. 13) (1327). MDPI AG. https://doi.org/10.3390/w13091327
  2. APHA. (2005). In L. S. C. A. E. G. A. D. Eaton (Ed.), Standard Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association, American Water Works Association, Water Environment Federation.
  3. Arabi, S., & Nakhla, G. (2009). Impact of magnesium on membrane fouling in membrane bioreactors. Separation and Purification Technology, 67(3), 319-325. https://doi.org/10.1016/j.seppur.2009.03.042
  4. Deng, L., Guo, W., Ngo, H. H., Zhang, J., Liang, S., Xia, S., Zhang, Z., & Li, J. (2014). A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor. Bioresource Technology, 165(C), 69-74. https://doi.org/10.1016/j.biortech.2014.02.111
  5. Deng, L., Guo, W., Ngo, H. H., Zuthi, M. F. R., Zhang, J., Liang, S., Li, J., Wang, J., & Zhang, X. (2015). Membrane fouling reduction and improvement of sludge characteristics by bioflocculant addition in submerged membrane bioreactor. Separation and Purification Technology, 156, 450-458. https://doi.org/10.1016/j.seppur.2015.10.034
  6. Diez, V., Ezquerra, D., Cabezas, J. L., García, A., & Ramos, C. (2014). A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. Journal of Membrane Science, 453, 1-11. https://doi.org/10.1016/j.memsci.2013.10.055
  7. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  8. Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196-206. https://doi.org/10.1016/j.biortech.2012.03.086
  9. Guo, W., Ngo, H. H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  10. Hong, Q. K., Wang, K. M., Wu, C. H., Qiu, Z. X., Shen, Y. X., Zhou, J. H., & Wang, H. Y. (2023). Effect of starch-coated magnetic particles on treatment performance and membrane fouling in membrane bioreactor for low carbon/nitrogen municipal wastewater treatment. Journal of Environmental Chemical Engineering, 11(2), 109436. https://doi.org/10.1016/j.jece.2023.109436
  11. Iorhemen, O. T., Hamza, R. A., Sheng, Z., & Tay, J. H. (2019). Submerged aerobic granular sludge membrane bioreactor (AGMBR): Organics and nutrients (nitrogen and phosphorus) removal. Bioresource Technology Reports, 6(March), 260-267.
  12. Iorhemen, O. T., Hamza, R. A., Zaghloul, M. S., & Tay, J. H. (2019). Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis. Water Research, 156, 305-314.
  13. Isma, M. I. A., Idris, A., Omar, R., & Razreena, A. R. P. (2014). Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(6), 459-463.
  14. Jamal Khan, S., Visvanathan, C., & Jegatheesan, V. (2012). Influence of biofilm carriers on membrane fouling propensity in moving biofilm membrane bioreactor. Bioresource Technology, 113, 161-164.
  15. Ji, J., Qiu, J., Wai, N., Wong, F., & Li, Y. (2010). Influence of organic and inorganic flocculants on physical-chemical properties of biomass and membrane-fouling rate. Water Research, 44(5), 1627-1635.
  16. Khan, S. J., Hasnain, G., Fareed, H., & Aim, R. (2019). Evaluation of treatment performance of a full-scale membrane bioreactor (MBR) plant from unsteady to steady state condition. Journal of Water Process Engineering, 30, 100379. https://doi.org/10.1016/j.jwpe.2017.03.004
  17. Kim, J. Y., Chang, I. S., Park, H. H., Kim, C. Y., Kim, J. B., & Oh, J. H. (2008). New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. Desalination, 230(1-3), 153-161. https://doi.org/10.1016/j.desal.2007.11.022
  18. Krzeminski, P., Leverette, L., Malamis, S., & Katsou, E. (2017). Membrane bioreactors-A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527, 207-227. https://doi.org/10.1016/j.memsci.2016.12.010
  19. Le-Clech, P., Chen, V., & Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1-2), 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  20. Lee, W., Kang, S., & Shin, H. (2003). Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 216(1-2), 217-227. https://doi.org/10.1016/S0376-7388(03)00073-5
  21. Liao, B. Q., Allen, D. G., Droppo, I. G., Leppard, G. G., & Liss, S. N. (2001). Surface properties of sludge and their role in bioflocculation and settleability. Water Research, 35(2), 339-350. https://doi.org/10.1016/S0043-1354(00)00277-3
  22. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B. Q., Hong, H., Chen, J., & Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
  23. Liu, Q., Ren, J., Lu, Y., Zhang, X., Roddick, F. A., Fan, L., Wang, Y., Yu, H., & Yao, P. (2021). A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. Journal of Industrial and Engineering Chemistry, 98, 42-59. https://doi.org/10.1016/j.jiec.2021.03.042
  24. Liu, Y., Liu, Z., Zhang, A., Chen, Y., & Wang, X. (2012). The role of EPS concentration on membrane fouling control: Comparison analysis of hybrid membrane bioreactor and conventional membrane bioreactor. Desalination, 305, 38-43.
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  26. Men, Y., Li, Z., Zhu, L., Wang, X., Cheng, S., & Lyu, Y. (2023). New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. Science of the Total Environment, 869, 161775. https://doi.org/10.1016/j.scitotenv.2023.161775
  27. Meng, F., Drews, A., Mehrez, R., Iversen, V., Ernst, M., Yang, F., Jekel, M., & Kraume, M. (2009). Occurrence, source, and fate of dissolved organic matter (DOM) in a pilot-scale membrane bioreactor. Environmental Science and Technology, 43(23), 8821-8826. https://doi.org/10.1021/es9019996
  28. Meng, F., Shi, B., Yang, F., & Zhang, H. (2007). New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts. Journal of Membrane Science, 302(1-2), 87-94. https://doi.org/10.1016/j.memsci.2007.06.030
  29. Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J., & Zhang, X. (2006). Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor. Journal of Membrane Science, 272(1-2), 161-168. https://doi.org/10.1016/j.memsci.2005.07.041
  30. Millanar-Marfa, J. M. J., Corpuz, M. V. A., Borea, L., Cabreros, C., G. de Luna, M. D., Ballesteros, F. J., Vigliotta, G., Zarra, T., Hasan, S. W., Korshin, G. V., Buonerba, A., Belgiorno, V., & Naddeo, V. (2022). Advanced wastewater treatment and membrane fouling control by electro-encapsulated self-forming dynamic membrane bioreactor. NPJ Clean Water, 5(1) Nature Research, 38. https://doi.org/10.1038/s41545-022-00184-z
  31. Mohan, S. M., & Nagalakshmi, S. (2020). A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning. Journal of Water Process Engineering, 37, 101541. https://doi.org/10.1016/j.jwpe.2020.101541
  32. Mohan, S. M., & Nagalakshmi, S. (2022). Performance evaluation of membrane bioreactor coupled with self-forming dynamic membrane. Journal of Environmental Management, 322, 116107.
  33. Oghyanous, F. A., Etemadi, H., & Yegani, R. (2021). The effect of sludge retention time and organic loading rate on performance and membrane fouling in membrane bioreactor. Journal of Chemical Technology and Biotechnology, 96(3), 743-754.
  34. Pollice, A., & Vergine, P. (2020). Self-forming dynamic membrane bioreactors (SFD MBR) for wastewater treatment: Principles and applications. In Current Developments in Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/B978-0-12-819854-4.00010-1
  35. Qin, L., Fan, Z., Xu, L., Zhang, G., Wang, G., Wu, D., Long, X., & Meng, Q. (2015). A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: Membrane permeability and fouling control. Bioresource Technology, 183, 33-41. https://doi.org/10.1016/j.biortech.2015.02.018
  36. Racar, M., Dolar, D., & Košutić, K. (2017). Chemical cleaning of flat sheet ultrafiltration membranes fouled by effluent organic matter. Separation and Purification Technology, 188, 140-146. https://doi.org/10.1016/j.seppur.2017.07.041
  37. Rafiei, B., Naeimpoor, F., & Mohammadi, T. (2014). Bio-film and bio-entrapped hybrid membrane bioreactors in wastewater treatment: Comparison of membrane fouling and removal efficiency. Desalination, 337(1), 16-22. https://doi.org/10.1016/j.desal.2013.12.025
  38. Saleem, M., Alibardi, L., Cossu, R., Lavagnolo, M. C., & Spagni, A. (2017). Analysis of fouling development under dynamic membrane filtration operation. Chemical Engineering Journal, 312, 136-143. https://doi.org/10.1016/j.cej.2016.11.123
  39. Sari Erkan, H., Çağlak, A., Soysaloglu, A., Takatas, B., & Onkal Engin, G. (2020). Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. Journal of Water Process Engineering, 38, 101631. https://doi.org/10.1016/j.jwpe.2020.101631
  40. Seo, G. T., Moon, B. H., Lee, T. S., Lim, T. J., & Kim, I. S. (2003). Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation. Water Science and Technology, 47(1), 133-138. https://doi.org/10.2166/wst.2003.0035
  41. Shen, L. G., Lei, Q., Chen, J. R., Hong, H. C., He, Y. M., & Lin, H. J. (2015). Membrane fouling in a submerged membrane bioreactor: Impacts of floc size. Chemical Engineering Journal, 269, 328-334. https://doi.org/10.1016/j.cej.2015.02.002
  42. Shen, Y. X., Xiao, K., Liang, P., Sun, J. Y., Sai, S. J., & Huang, X. (2012). Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. Journal of Membrane Science, 415-416, 336-345. https://doi.org/10.1016/j.memsci.2012.05.017
  43. Sreeda, P., Sathya, A. B., & Sivasubramanian, V. (2018). Novel application of high-density polyethylene mesh as self-forming dynamic membrane integrated into a bioreactor for wastewater treatment. Environmental technology (United Kingdom), 39(1), 51-58. https://doi.org/10.1080/09593330.2017.1294623
  44. Teng, J., Wu, M., Chen, J., Lin, H., & He, Y. (2020). Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere, 255, 126953. https://doi.org/10.1016/j.chemosphere.2020.126953
  45. Tian, Y., Lu, Y., & Li, Z. (2012). Performance analysis of a combined system of membrane bioreactor and worm reactor: Wastewater treatment, sludge reduction and membrane fouling. Bioresource Technology, 121, 176-182.
  46. Wang, L., Liu, H., Zhang, W., Yu, T., Jin, Q., Fu, B., & Liu, H. (2018). Recovery of organic matters in wastewater by self-forming dynamic membrane bioreactor: Performance and membrane fouling. Chemosphere, 203, 123-131. https://doi.org/10.1016/j.chemosphere.2018.03.171
  47. Wang, Z., Wu, Z., & Tang, S. (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43(9), 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026
  48. Wilén, B. M., Jin, B., & Lant, P. (2003). The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research, 37(9), 2127-2139. https://doi.org/10.1016/S0043-1354(02)00629-2
  49. Wu, J., & Huang, X. (2009). Effect of mixed liquor properties on fouling propensity in membrane bioreactors. Journal of Membrane Science, 342(1-2), 88-96. https://doi.org/10.1016/j.memsci.2009.06.024
  50. Yang, S., & Li, X. Y. (2009). Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochemistry, 44(1), 91-96. https://doi.org/10.1016/j.procbio.2008.09.010
  51. Zhang, B., Huang, D., Shen, Y., Yin, W., Gao, X., Zhang, B., & Shi, W. (2020). Treatment of municipal wastewater with aerobic granular sludge membrane bioreactor (AGMBR): Performance and membrane fouling. Journal of Cleaner Production, 273, 123124. https://doi.org/10.1016/j.jclepro.2020.123124
  52. Zhang, H., Fan, X., Wang, B., & Song, L. (2016). Calcium ion on membrane fouling reduction and bioflocculation promotion in membrane bioreactor at high salt shock. Bioresource Technology, 200, 535-540. https://doi.org/10.1016/j.biortech.2015.10.080
  53. Zhang, H. F. (2009). Impact of soluble microbial products and extracellular polymeric substances on filtration resistance in a membrane bioreactor. Environmental Engineering Science, 26(6), 1115-1122. https://doi.org/10.1089/ees.2008.0312
  54. Zhao, F., Weng, F., Xue, G., Jiang, Q., & Qiu, Y. (2016). Filtration performance of three dimensional fabric filter in a membrane bioreactor for wastewater treatment. Separation and Purification Technology, 157, 17-26. https://doi.org/10.1016/j.seppur.2015.11.022

MeSH Term

Membranes, Artificial
Bioreactors
Water Purification
Sewage

Chemicals

Membranes, Artificial
Sewage

Word Cloud

Created with Highcharts 10.0.0foulingmembraneNovel-MBRCMBRbioreactorexperiencedmaximumrateresistanceself-formingdynamicsponge-wrappedtimeslayer0lessreversibleirreversiblestudynoveltriedcontrolSFDMconventional150 daysrespectivelySFDMsfrequent583 kPa/daycake mcontributed84%0266 kPa/dayendoperationMembranetechnologyofferswidevarietyadvantageswastewatertreatmentimpedeswidespreadapplicationsHencemethodcombiningconfigurationtermed"Novel-membranebioreactor"compareperformanceoperatedsimilaroperatingconditionsrunconsequently60composedtwocompartmentscompartmentformationcoarse125 μmfine37 μmporeclothfilers4313 mindue692 × 10highalone329 × 10Also2136formedspongewrappedhelpedreducemodificationpresenttransmembranepressure4 kPaPRACTITIONERPOINTS:Cakedominantexpectedperform≈3380 daysreachTMP35 kPaEnhancedmembrane:novel-membrane

Similar Articles

Cited By