Integrating material properties from magnetic resonance elastography into subject-specific computational models for the human brain.

Ahmed Alshareef, Andrew K Knutsen, Curtis L Johnson, Aaron Carass, Kshitiz Upadhyay, Philip V Bayly, Dzung L Pham, Jerry L Prince, K T Ramesh
Author Information
  1. Ahmed Alshareef: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, 3400 N Charles St., MD 21218, United States.
  2. Andrew K Knutsen: Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, 6720A Rockledge Dr, Bethesda, MD 20814, United States.
  3. Curtis L Johnson: Department of Biomedical Engineering, University of Delaware, Newark, 210 South College Ave., DE 19716, United States.
  4. Aaron Carass: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, 3400 N Charles St., MD 21218, United States.
  5. Kshitiz Upadhyay: Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States.
  6. Philip V Bayly: Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States.
  7. Dzung L Pham: Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, 6720A Rockledge Dr, Bethesda, MD 20814, United States.
  8. Jerry L Prince: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, 3400 N Charles St., MD 21218, United States.
  9. K T Ramesh: Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States.

Abstract

Advances in brain imaging and computational methods have facilitated the creation of subject-specific computational brain models that aid researchers in investigating brain trauma using simulated impacts. The emergence of magnetic resonance elastography (MRE) as a non-invasive mechanical neuroimaging tool has enabled in vivo estimation of material properties at low-strain, harmonic loading. An open question in the field has been how this data can be integrated into computational models. The goals of this study were to use a novel MRI dataset acquired in human volunteers to generate models with subject-specific anatomy and material properties, and then to compare simulated brain deformations to subject-specific brain deformation data under non-injurious loading. Models of five subjects were simulated with linear viscoelastic (LVE) material properties estimated directly from MRE data. Model predictions were compared to experimental brain deformation acquired in the same subjects using tagged MRI. Outcomes from the models matched the spatial distribution and magnitude of the measured peak strain components as well as the 95 percentile in-plane peak strains within 0.005 mm/mm and maximum principal strain within 0.012 mm/mm. Sensitivity to material heterogeneity was also investigated. Simulated brain deformations from a model with homogenous brain properties and a model with brain properties discretized with up to ten regions were very similar (a mean absolute difference less than 0.0015 mm/mm in peak strains). Incorporating material properties directly from MRE into a biofidelic subject-specific model is an important step toward future investigations of higher-order model features and simulations under more severe loading conditions.

Keywords

References

  1. Biomech Model Mechanobiol. 2016 Oct;15(5):1201-14 [PMID: 26762217]
  2. IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467 [PMID: 30296208]
  3. J Biomech. 2014 Nov 7;47(14):3475-81 [PMID: 25287113]
  4. Stapp Car Crash J. 2007 Oct;51:17-80 [PMID: 18278591]
  5. Ann Biomed Eng. 2020 Dec;48(12):2751-2762 [PMID: 32929556]
  6. J Biomech Eng. 2014 Feb;136(2):021008 [PMID: 24384610]
  7. Biorheology. 2010;47(5-6):255-76 [PMID: 21403381]
  8. Brain Multiphys. 2020 Nov;1: [PMID: 33870238]
  9. J Neurotrauma. 2020 Jan 15;37(2):410-422 [PMID: 31382861]
  10. Neuroimage. 2016 May 15;132:439-454 [PMID: 26931817]
  11. Clin Biomech (Bristol, Avon). 2019 Apr;64:49-57 [PMID: 29625747]
  12. Ann Biomed Eng. 2020 Oct;48(10):2412-2424 [PMID: 32725547]
  13. Stapp Car Crash J. 2008 Nov;52:1-31 [PMID: 19085156]
  14. Front Bioeng Biotechnol. 2021 May 04;9:664268 [PMID: 34017826]
  15. Neuroimage. 2016 Sep;138:197-210 [PMID: 27184203]
  16. Biomech Model Mechanobiol. 2021 Apr;20(2):403-431 [PMID: 33037509]
  17. J Biomech. 1970 Mar;3(2):211-21 [PMID: 5521539]
  18. Brain. 2017 Feb;140(2):333-343 [PMID: 28043957]
  19. Biomech Model Mechanobiol. 2020 Jun;19(3):1109-1130 [PMID: 31811417]
  20. Ann Biomed Eng. 2019 Sep;47(9):1908-1922 [PMID: 30877404]
  21. J Neurotrauma. 2020 Jul 1;37(13):1546-1555 [PMID: 31952465]
  22. Int J Numer Method Biomed Eng. 2017 May;33(5): [PMID: 27502006]
  23. Comput Methods Biomech Biomed Engin. 2016 Oct;19(13):1432-42 [PMID: 26867124]
  24. J Neurotrauma. 2018 Mar 1;35(5):780-789 [PMID: 29179620]
  25. Ann Biomed Eng. 2019 Sep;47(9):1832-1854 [PMID: 30693442]
  26. Neuroimage. 2013 Oct 1;79:145-52 [PMID: 23644001]
  27. J Neurotrauma. 2021 Jan 1;38(1):144-157 [PMID: 32772838]
  28. Ann Biomed Eng. 2021 Mar;49(3):1097-1109 [PMID: 33475893]
  29. Med Phys. 2012 Oct;39(10):6388-96 [PMID: 23039674]
  30. Ann Biomed Eng. 2016 Dec;44(12):3705-3718 [PMID: 27436295]
  31. J Neurotrauma. 2005 Aug;22(8):845-56 [PMID: 16083352]
  32. Br J Radiol. 2021 Mar 1;94(1119):20200265 [PMID: 33605783]
  33. J Mech Behav Biomed Mater. 2014 May;33:24-42 [PMID: 24063789]
  34. J Neurotrauma. 2015 Apr 1;32(7):441-54 [PMID: 24735430]
  35. Ann Biomed Eng. 2020 Nov;48(11):2566-2579 [PMID: 33025321]
  36. Phys Med Biol. 2016 Dec 21;61(24):R401-R437 [PMID: 27845941]
  37. Neuroimage Clin. 2019;22:101750 [PMID: 30870734]
  38. J Neurotrauma. 2017 Jul 1;34(13):2154-2166 [PMID: 28394205]
  39. Stapp Car Crash J. 2013 Nov;57:243-66 [PMID: 24435734]
  40. Clin J Sport Med. 2005 Jan;15(1):3-8 [PMID: 15654184]
  41. Stapp Car Crash J. 2007 Oct;51:81-114 [PMID: 18278592]
  42. Ann Biomed Eng. 2018 May;46(5):736-748 [PMID: 29404847]
  43. Biomech Model Mechanobiol. 2012 Jan;11(1-2):245-60 [PMID: 21476072]
  44. Neuroimage. 2015 Feb 1;106:284-99 [PMID: 25433212]
  45. Biomech Model Mechanobiol. 2021 Dec;20(6):2301-2317 [PMID: 34432184]
  46. Hum Brain Mapp. 2020 Dec 15;41(18):5282-5300 [PMID: 32931076]
  47. Ann Biomed Eng. 2013 Sep;41(9):1939-49 [PMID: 23604848]
  48. Neuroimage. 2017 Feb 1;146:132-147 [PMID: 27864083]
  49. Med Image Comput Comput Assist Interv. 2017 Sep;10433:92-99 [PMID: 28944346]
  50. J Biomech. 2009 Sep 18;42(13):2074-80 [PMID: 19679308]
  51. Brain Inj. 2012;26(2):107-25 [PMID: 22360518]
  52. Stapp Car Crash J. 2001 Nov;45:337-68 [PMID: 17458753]
  53. J Neurotrauma. 2016 Oct 15;33(20):1834-1847 [PMID: 26782139]
  54. Ann Biomed Eng. 2019 Sep;47(9):1971-1981 [PMID: 30515603]
  55. Ann Biomed Eng. 2019 Sep;47(9):1855-1872 [PMID: 30377899]
  56. J Appl Physiol. 1966 Jul;21(4):1231-6 [PMID: 5916656]
  57. Biomech Model Mechanobiol. 2015 Oct;14(5):931-65 [PMID: 25716305]
  58. J Biomech Eng. 2013 Nov;135(11):111002 [PMID: 24065136]
  59. Biomech Model Mechanobiol. 2017 Aug;16(4):1269-1293 [PMID: 28233136]
  60. J Neurotrauma. 2017 Aug 15;34(16):2410-2424 [PMID: 28358277]
  61. J Safety Res. 2012 Sep;43(4):299-307 [PMID: 23127680]
  62. Ann Biomed Eng. 2018 Jul;46(7):972-985 [PMID: 29594689]
  63. J Biomech Eng. 2018 Oct 1;140(10): [PMID: 30029236]
  64. Ann Biomed Eng. 2021 Oct;49(10):2677-2692 [PMID: 34212235]
  65. Shock Waves. 2018 Jan;28(1):127-139 [PMID: 29662272]
  66. Ann Biomed Eng. 2020 Jun;48(6):1661-1677 [PMID: 32240424]
  67. Ann Biomed Eng. 2019 Sep;47(9):1923-1940 [PMID: 30767132]
  68. MMWR Surveill Summ. 2017 Mar 17;66(9):1-16 [PMID: 28301451]
  69. J Neurotrauma. 2021 Jun 1;38(13):1879-1888 [PMID: 33446011]

Grants

  1. U01 NS112120/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0brainpropertiesmodelsmaterialsubject-specificcomputationalresonancemodelsimulatedelastographyMREloadingdatadeformationpeak0mm/mmimagingusingmagneticMRIacquiredhumandeformationssubjectsdirectlyModelstrainstrainswithinMagneticAdvancesmethodsfacilitatedcreationaidresearchersinvestigatingtraumaimpactsemergencenon-invasivemechanicalneuroimagingtoolenabledvivoestimationlow-strainharmonicopenquestionfieldcanintegratedgoalsstudyusenoveldatasetvolunteersgenerateanatomycomparenon-injuriousModelsfivelinearviscoelasticLVEestimatedpredictionscomparedexperimentaltaggedOutcomesmatchedspatialdistributionmagnitudemeasuredcomponentswell95percentilein-plane005maximumprincipal012SensitivityheterogeneityalsoinvestigatedSimulatedhomogenousdiscretizedtenregionssimilarmeanabsolutedifferenceless0015Incorporatingbiofidelicimportantsteptowardfutureinvestigationshigher-orderfeaturessimulationssevereconditionsIntegratingBrainevaluationSubject-specific

Similar Articles

Cited By