The role of explainable Artificial Intelligence in high-stakes decision-making systems: a systematic review.

Bukhoree Sahoh, Anant Choksuriwong
Author Information
  1. Bukhoree Sahoh: Informatics Innovation Center of Excellence (IICE), School of Informatics, Walailak University, Nakhon Si Thammarat, 80160 Tha Sala Thailand. ORCID
  2. Anant Choksuriwong: Department of Computer Engineering Faculty of Engineering, Prince of Songkla University, Had Yai, 90112 Songkla Thailand.

Abstract

A high-stakes event is an extreme risk with a low probability of occurring, but severe consequences (e.g., life-threatening conditions or economic collapse). The accompanying lack of information is a source of high-stress pressure and anxiety for emergency medical services authorities. Deciding on the best proactive plan and action in this environment is a complicated process, which calls for intelligent agents to automatically produce knowledge in the manner of human-like intelligence. Research in high-stakes decision-making systems has increasingly focused on eXplainable Artificial Intelligence (XAI), but recent developments in prediction systems give little prominence to explanations based on human-like intelligence. This work investigates XAI based on cause-and-effect interpretations for supporting high-stakes decisions. We review recent applications in the first aid and medical emergency fields based on three perspectives: available data, desirable knowledge, and the use of intelligence. We identify the limitations of recent AI, and discuss the potential of XAI for dealing with such limitations. We propose an architecture for high-stakes decision-making driven by XAI, and highlight likely future trends and directions.

Keywords

References

  1. Artif Intell Med. 2021 Aug;118:102119 [PMID: 34412842]
  2. Nat Mach Intell. 2019 May;1(5):206-215 [PMID: 35603010]
  3. J Bus Contin Emer Plan. 2018 Jan 1;11(4):335-59 [PMID: 30670135]
  4. J Syst Sci Syst Eng. 2020;29(4):412-428 [PMID: 32837111]
  5. Sci Adv. 2016 Mar 11;2(3):e1500779 [PMID: 27034978]
  6. J Clin Epidemiol. 1993 Dec;46(12):1417-32 [PMID: 8263569]
  7. Sci Rep. 2021 Mar 18;11(1):6375 [PMID: 33737679]
  8. Accid Anal Prev. 2016 Mar;88:37-51 [PMID: 26710268]
  9. IEEE Trans Affect Comput. 2023 Jul-Sep;14(3):2020-2032 [PMID: 37840968]
  10. J Environ Manage. 2020 May 15;262:110382 [PMID: 32250833]
  11. Int J Environ Res Public Health. 2019 Dec 19;17(1): [PMID: 31861677]
  12. Int J Med Inform. 2020 Jul;139:104143 [PMID: 32330853]
  13. IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2159-68 [PMID: 24051782]
  14. Sci Robot. 2019 Dec 18;4(37): [PMID: 33137719]
  15. Sensors (Basel). 2014 Feb 19;14(2):3362-94 [PMID: 24556672]
  16. IEEE Trans Artif Intell. 2021 Apr 14;2(1):18-27 [PMID: 35233556]
  17. Glob Public Health. 2022 Jan;17(1):68-82 [PMID: 33332222]
  18. Acad Emerg Med. 2016 Mar;23(3):269-78 [PMID: 26679719]
  19. Accid Anal Prev. 2022 Mar;166:106543 [PMID: 34971922]
  20. Aging Dis. 2020 May 9;11(3):668-678 [PMID: 32489711]
  21. Resuscitation. 2013 May;84(5):539-46 [PMID: 23123559]
  22. Cogn Sci. 2019 Jul;43(7):e12762 [PMID: 31310025]
  23. Accid Anal Prev. 2020 Sep;144:105607 [PMID: 32574767]
  24. Front Genet. 2019 Jun 04;10:524 [PMID: 31214249]
  25. Accid Anal Prev. 2020 Mar;136:105429 [PMID: 31931409]
  26. Sensors (Basel). 2016 Jan 14;16(1): [PMID: 26784196]
  27. Emerg Themes Epidemiol. 2019 Jan 7;16:1 [PMID: 30627207]

Word Cloud

Created with Highcharts 10.0.0high-stakesXAIintelligencedecision-makingrecentbasedemergencymedicalknowledgehuman-likesystemsArtificialIntelligencereviewlimitationsCausallearningeventextremerisklowprobabilityoccurringsevereconsequenceseglife-threateningconditionseconomiccollapseaccompanyinglackinformationsourcehigh-stresspressureanxietyservicesauthoritiesDecidingbestproactiveplanactionenvironmentcomplicatedprocesscallsintelligentagentsautomaticallyproducemannerResearchincreasinglyfocusedeXplainabledevelopmentspredictiongivelittleprominenceexplanationsworkinvestigatescause-and-effectinterpretationssupportingdecisionsapplicationsfirstaidfieldsthreeperspectives:availabledatadesirableuseidentifyAIdiscusspotentialdealingproposearchitecturedrivenhighlightlikelyfuturetrendsdirectionsroleexplainablesystems:systematicBayesiannetworksdiscoveryinferenceCauseeffectDeepMachine

Similar Articles

Cited By