Automatic detection of health misinformation: a systematic review.

Ipek Baris Schlicht, Eugenia Fernandez, Berta Chulvi, Paolo Rosso
Author Information
  1. Ipek Baris Schlicht: Universitat Polit��cnica de Val��ncia, Valencia, Spain. ORCID
  2. Eugenia Fernandez: Independent Researcher, Valencia, Spain. ORCID
  3. Berta Chulvi: Universitat Polit��cnica de Val��ncia, Valencia, Spain. ORCID
  4. Paolo Rosso: Universitat Polit��cnica de Val��ncia, Valencia, Spain. ORCID

Abstract

The spread of health misinformation has the potential to cause serious harm to public health, from leading to vaccine hesitancy to adoption of unproven disease treatments. In addition, it could have other effects on society such as an increase in hate speech towards ethnic groups or medical experts. To counteract the sheer amount of misinformation, there is a need to use automatic detection methods. In this paper we conduct a systematic review of the computer science literature exploring text mining techniques and machine learning methods to detect health misinformation. To organize the reviewed papers, we propose a taxonomy, examine publicly available datasets, and conduct a content-based analysis to investigate analogies and differences among Covid-19 datasets and datasets related to other health domains. Finally, we describe open challenges and conclude with future directions.

Keywords

References

  1. J Am Coll Health. 2011;59(5):379-86 [PMID: 21500056]
  2. BMC Fam Pract. 2007 Aug 16;8:47 [PMID: 17705836]
  3. Soc Netw Anal Min. 2021;11(1):58 [PMID: 34178179]
  4. Annu Rev Public Health. 2020 Apr 2;41:433-451 [PMID: 31874069]
  5. Arch Dis Child. 2013 Oct;98(10):752-4 [PMID: 23898160]
  6. J Med Internet Res. 2021 Aug 5;23(8):e26478 [PMID: 34383667]
  7. JMIR Public Health Surveill. 2021 Jun 24;7(6):e23105 [PMID: 34185004]
  8. Am J Trop Med Hyg. 2020 Oct;103(4):1621-1629 [PMID: 32783794]
  9. PeerJ Comput Sci. 2021 Jun 18;7:e518 [PMID: 34239967]
  10. Int J Environ Res Public Health. 2020 Apr 23;17(8): [PMID: 32340349]
  11. Int J Environ Res Public Health. 2022 Feb 15;19(4): [PMID: 35206359]
  12. BMC Med Inform Decis Mak. 2020 Jun 9;20(1):104 [PMID: 32517759]
  13. Psychol Sci Public Interest. 2012 Dec;13(3):106-31 [PMID: 26173286]
  14. Soc Sci Med. 2019 Nov;240:112552 [PMID: 31561111]
  15. Public Health. 2022 Feb;203:23-30 [PMID: 35016072]
  16. Am J Public Health. 2020 Oct;110(S3):S273-S275 [PMID: 33001722]
  17. Nature. 2018 Oct;562(7727):309 [PMID: 30327527]
  18. Science. 2018 Mar 9;359(6380):1146-1151 [PMID: 29590045]
  19. J Vasc Interv Radiol. 2020 Jul;31(7):1187-1188 [PMID: 32522506]
  20. BMJ. 2014 Dec 09;349:g7015 [PMID: 25498121]
  21. J Med Internet Res. 2021 Jan 20;23(1):e17187 [PMID: 33470931]
  22. PLoS One. 2011;6(12):e26752 [PMID: 22163266]
  23. J Med Internet Res. 2019 Nov 4;21(11):e14007 [PMID: 31682571]
  24. Patient Educ Couns. 2021 Jun;104(6):1460-1466 [PMID: 33243581]
  25. JMIR Public Health Surveill. 2021 Apr 14;7(4):e26527 [PMID: 33764882]
  26. Health Commun. 2012;27(1):30-41 [PMID: 21797714]
  27. IEEE J Biomed Health Inform. 2021 Feb;25(2):591-601 [PMID: 33079686]
  28. IEEE J Biomed Health Inform. 2021 Jun;25(6):2193-2203 [PMID: 33170786]
  29. Inf Process Manag. 2021 Jul;58(4):102569 [PMID: 33776192]
  30. J Epidemiol Community Health. 1999 Feb;53(2):105-11 [PMID: 10396471]
  31. IEEE Trans Artif Intell. 2020 Sep 02;1(1):85-103 [PMID: 37982070]

Word Cloud

Created with Highcharts 10.0.0healthmisinformationdatasetsdetectionmethodsconductsystematicreviewmininglearningspreadpotentialcauseseriousharmpublicleadingvaccinehesitancyadoptionunprovendiseasetreatmentsadditioneffectssocietyincreasehatespeechtowardsethnicgroupsmedicalexpertscounteractsheeramountneeduseautomaticpapercomputerscienceliteratureexploringtexttechniquesmachinedetectorganizereviewedpapersproposetaxonomyexaminepubliclyavailablecontent-basedanalysisinvestigateanalogiesdifferencesamongCovid-19relateddomainsFinallydescribeopenchallengesconcludefuturedirectionsAutomaticmisinformation:HealthMachineSurveyText

Similar Articles

Cited By (5)