A stochastic agent-based model to evaluate COVID-19 transmission influenced by human mobility.

Kejie Chen, Xiaomo Jiang, Yanqing Li, Rongxin Zhou
Author Information
  1. Kejie Chen: School of Optoelectric Engineering and Instrumental Science, Dalian University of Technology, Dalian, 116024 China. ORCID
  2. Xiaomo Jiang: Provincial Key Lab of Digital Twin for Industrial Equipment, Dalian, 116024 China.
  3. Yanqing Li: School of Optoelectric Engineering and Instrumental Science, Dalian University of Technology, Dalian, 116024 China.
  4. Rongxin Zhou: School of Optoelectric Engineering and Instrumental Science, Dalian University of Technology, Dalian, 116024 China.

Abstract

The COVID-19 pandemic has created an urgent need for mathematical models that can project epidemic trends and evaluate the effectiveness of mitigation strategies. A major challenge in forecasting the transmission of COVID-19 is the accurate assessment of the multiscale human mobility and how it impacts infection through close contacts. By combining the stochastic agent-based modeling strategy and hierarchical structures of spatial containers corresponding to the notion of geographical places, this study proposes a novel model, Mob-Cov, to study the impact of human traveling behavior and individual health conditions on the disease outbreak and the probability of zero-COVID in the population. Specifically, individuals perform power law-type local movements within a container and global transport between different-level containers. It is revealed that frequent long-distance movements inside a small-level container (e.g., a road or a county) and a small population size reduce both the local crowdedness and disease transmission. It takes only half of the time to induce global disease outbreaks when the population increases from 150 to 500 (normalized unit). When the exponent of the long-tail distribution of distance moved in the same-level container, , increases, the outbreak time decreases rapidly from 75 to 25 (normalized unit). In contrast, travel between large-level containers (e.g., cities and nations) facilitates global spread of the disease and outbreak. When the mean traveling distance across containers increases from 0.5 to 1 (normalized unit), the outbreak occurs almost twice as fast. Moreover, dynamic infection and recovery in the population are able to drive the bifurcation of the system to a "zero-COVID" state or to a "live with COVID" state, depending on the mobility patterns, population number and health conditions. Reducing population size and restricting global travel help achieve zero-COVID-19. Specifically, when is smaller than 0.2, the ratio of people with low levels of mobility is larger than 80% and the population size is smaller than 400, zero-COVID can be achieved within fewer than 1000 time steps. In summary, the Mob-Cov model considers more realistic human mobility at a wide range of spatial scales, and has been designed with equal emphasis on performance, low simulation cost, accuracy, ease of use and flexibility. It is a useful tool for researchers and politicians to apply when investigating pandemic dynamics and when planning actions against disease.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-023-08489-5.

Keywords

References

  1. Nonlinear Dyn. 2022;107(3):3065-3084 [PMID: 35068690]
  2. Nat Methods. 2020 Jun;17(6):557-558 [PMID: 32499633]
  3. Int Stat Rev. 2020 Aug;88(2):462-513 [PMID: 32834402]
  4. Comput Biol Med. 2022 Feb;141:104995 [PMID: 34774336]
  5. Comput Biol Med. 2022 Sep;148:105847 [PMID: 35932728]
  6. Science. 2020 Jul 10;369(6500): [PMID: 32414780]
  7. Comput Methods Programs Biomed. 2021 Sep;209:106301 [PMID: 34392001]
  8. Comput Biol Med. 2020 Jun;121:103827 [PMID: 32568667]
  9. Infect Dis Poverty. 2022 Jun 21;11(1):72 [PMID: 35729655]
  10. Cognit Comput. 2021 Feb 19;:1-12 [PMID: 33643473]
  11. Chaos Solitons Fractals. 2020 Oct;139:110088 [PMID: 32834624]
  12. PLoS Comput Biol. 2021 Jul 26;17(7):e1009149 [PMID: 34310589]
  13. Nat Comput Sci. 2021 Dec;1(12):791-800 [PMID: 38217178]
  14. Lancet Public Health. 2020 May;5(5):e261-e270 [PMID: 32220655]
  15. Lancet Infect Dis. 2020 Jun;20(6):678-688 [PMID: 32213332]
  16. Sci Adv. 2021 Mar 5;7(10): [PMID: 33674304]
  17. Infect Dis Model. 2020 Jan 08;5:129-141 [PMID: 31956741]
  18. Nonlinear Dyn. 2021;104(3):2853-2864 [PMID: 33840897]
  19. Front Med (Lausanne). 2020 Jun 18;7:321 [PMID: 32626719]
  20. Chaos Solitons Fractals. 2020 Nov;140:110103 [PMID: 32834629]
  21. Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200604 [PMID: 33633491]
  22. Nat Hum Behav. 2020 Sep;4(9):964-971 [PMID: 32759985]
  23. Chaos Solitons Fractals. 2021 May;146:110885 [PMID: 33776250]
  24. Comput Biol Med. 2022 Feb;141:105115 [PMID: 34922174]
  25. Nat Med. 2020 Sep;26(9):1417-1421 [PMID: 32665655]
  26. Lancet Infect Dis. 2022 Sep;22(9):1293-1302 [PMID: 35753318]
  27. Nat Commun. 2021 Jan 12;12(1):323 [PMID: 33436609]
  28. Nature. 2021 May;593(7860):522-527 [PMID: 34040209]
  29. Results Phys. 2022 Feb;33:105177 [PMID: 35070649]
  30. Comput Biol Med. 2022 May;144:105396 [PMID: 35299041]
  31. Nature. 2020 Nov;587(7834):402-407 [PMID: 33208961]
  32. Nat Hum Behav. 2020 Aug;4(8):800-810 [PMID: 32424257]
  33. Trop Med Int Health. 2020 Mar;25(3):278-280 [PMID: 32052514]
  34. Precis Clin Med. 2020 Jun;3(2):85-93 [PMID: 35960670]
  35. Nonlinear Dyn. 2022;107(1):1313-1327 [PMID: 34728898]
  36. Nat Rev Phys. 2022;4(1):12-13 [PMID: 34877474]
  37. Nat Med. 2020 Jun;26(6):855-860 [PMID: 32322102]
  38. Nat Commun. 2020 Nov 11;11(1):5710 [PMID: 33177507]
  39. IEEE J Biomed Health Inform. 2022 May;26(5):2052-2062 [PMID: 35298388]
  40. BMJ Open. 2021 Nov 16;11(11):e053507 [PMID: 34785556]
  41. PLoS Comput Biol. 2021 Jul 12;17(7):e1009146 [PMID: 34252083]
  42. Chaos Solitons Fractals. 2020 Jun;135:109846 [PMID: 32341628]
  43. Nonlinear Dyn. 2021;104(3):2865-2900 [PMID: 33814725]

Word Cloud

Created with Highcharts 10.0.0populationmobilitydiseaseCOVID-19humancontainersmodeloutbreakglobaltransmissioncontainersizetimeincreasesnormalizedunitpandemiccanevaluateinfectionstochasticagent-basedmodelingspatialstudyMob-Covtravelinghealthconditionszero-COVIDSpecificallylocalmovementswithinegdistancetravel0statesmallerlowcreatedurgentneedmathematicalmodelsprojectepidemictrendseffectivenessmitigationstrategiesmajorchallengeforecastingaccurateassessmentmultiscaleimpactsclosecontactscombiningstrategyhierarchicalstructurescorrespondingnotiongeographicalplacesproposesnovelimpactbehaviorindividualprobabilityindividualsperformpowerlaw-typetransportdifferent-levelrevealedfrequentlong-distanceinsidesmall-levelroadcountysmallreducecrowdednesstakeshalfinduceoutbreaks150500exponentlong-taildistributionmovedsame-leveldecreasesrapidly7525contrastlarge-levelcitiesnationsfacilitatesspreadmeanacross51occursalmosttwicefastMoreoverdynamicrecoveryabledrivebifurcationsystem"zero-COVID""liveCOVID"dependingpatternsnumberReducingrestrictinghelpachievezero-COVID-192ratiopeoplelevelslarger80%400achievedfewer1000stepssummaryconsidersrealisticwiderangescalesdesignedequalemphasisperformancesimulationcostaccuracyeaseuseflexibilityusefultoolresearcherspoliticiansapplyinvestigatingdynamicsplanningactionsSupplementaryInformation:onlineversioncontainssupplementarymaterialavailable101007/s11071-023-08489-5influencedAgent-basedBifurcationContainerHumanInfectious

Similar Articles

Cited By