van Aert RCM, Goos C. A critical reflection on computing the sampling variance of the partial correlation coefficient. Res Synth Methods. 2023;14(3):520-525. doi:10.1002/jrsm.1632
Olkin I, Siotani M. Asymptotic distribution of functions of a correlation matrix. In: Ikeda S, ed. Essays in Probability and Statistics. Shinko Tsusho; 1976:235-251.
Anderson TW. An Introduction to Multivariate Statistical Analysis. 2nd ed. Wiley; 1984.
Stanley TD, Doucouliagos H. Meta-Regression Analysis in Economics and Business. Routledge; 2012.
Stanley TD, Doucouliagos H. Correct standard errors can bias meta-analysis. Res Synth Methods. 2023;14(3):515-519. doi:10.1002/jrsm.1631
Brannick MT, Yang LQ, Cafri G. Comparison of weights for meta-analysis of r and d under realistic conditions. Organ Res Methods. 2011;14(4):587-607. doi:10.1177/1094428110368725
Hong S, Reed WR. Meta-Analysis and Partial Correlation Coefficients: A Matter of Weights. Department of Economics and Finance, University of Canterbury; 2023. Working Papers in Economics 23/07. https://EconPapers.repec.org/RePEc:cbt:econwp:23/07
Polanin JR, Espelage DL, Grotpeter JK, et al. A meta-analysis of longitudinal partial correlations between school violence and mental health, school performance, and criminal or delinquent acts. Psychol Bull. 2021;147(2):115-133. doi:10.1037/bul0000314
Peng P, Lin X, Ünal ZE, et al. Examining the mutual relations between language and mathematics: a meta-analysis. Psychol Bull. 2020;146(7):595-634. doi:10.1037/bul0000231
Chiang JJ, Lam PH, Chen E, Miller GE. Psychological stress during childhood and adolescence and its association with inflammation across the lifespan: a critical review and meta-analysis. Psychol Bull. 2022;148(1-2):27-66. doi:10.1037/bul0000351
Anwar AI, Mang CF. Do remittances cause Dutch disease? A meta-analytic review. Appl Econ. 2022;54(36):4131-4153. doi:10.1080/00036846.2021.2022091
Sun Z, Zhu D. Investigating environmental regulation effects on technological innovation: a meta-regression analysis. Energy Environ. 2021;34:463-492. doi:10.1177/0958305X211069654
Filomena M, Picchio M. Retirement and health outcomes in a meta-analytical framework. J Econ Surv. 2022;12527. doi:10.1111/joes.12527
Jackson D, White IR. When should meta-analysis avoid making hidden normality assumptions? Biom J. 2018;60(6):1040-1058. doi:10.1002/bimj.201800071
Fisher RA. The distribution of the partial correlation coefficient. Metron. 1924;3:329-332.
Borenstein M, Hedges LV. Effect sizes for meta-analysis. In: Cooper H, Hedges LV, Valentine JC, eds. The Handbook of Research Synthesis and Meta-Analysis. 3rd ed. Rusell Sage Foundation; 2019:207-244.
Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press; 1985.
Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79. doi:10.1002/jrsm.1164
Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Methods. 2016;8(2):181-198. doi:10.1002/jrsm.1198
Langan D, Higgins JP, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98. doi:10.1002/jrsm.1316
Hartung J. An alternative method for meta-analysis. Biom J. 1999;41(8):901-916.
Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20(24):3875-3889. doi:10.1002/sim.1009
Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 2001;20(12):1771-1782. doi:10.1002/sim.791
Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159. doi:10.1002/sim.1262
van Aert RCM, Jackson D. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression. Res Synth Methods. 2019;10(4):515-527. doi:10.1002/jrsm.1356
IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14:14. doi:10.1186/1471-2288-14-25
Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med. 2016;35(15):2503-2515. doi:10.1002/sim.6879
Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15:15. doi:10.1186/s12874-015-0091-1
R Core Team. R: A Language and Environment for Statistical Computing. 2023.
Hafdahl AR. Improved Fisher z estimators for univariate random-effects meta-analysis of correlations. Br J Math Stat Psychol. 2009;62(2):233-261. doi:10.1348/000711008X281633
Hafdahl AR. Random-effects meta-analysis of correlations: Monte Carlo evaluation of mean estimators. Br J Math Stat Psychol. 2010;63(1):227-254. doi:10.1348/000711009X431914
Hafdahl AR, Williams MA. Meta-analysis of correlations revisited: attempted replication and extension of Field's (2001) simulation studies. Psychol Methods. 2009;14:24-42. doi:10.1037/a0014697
Schulze R. Meta-Analysis: A Comparison of Approaches. Hogrefe & Huber; 2004.
Hunter JE, Schmidt FL. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. Sage; 2015.
Field AP. Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed- and random-effects methods. Psychol Methods. 2001;6(2):161-180. doi:10.1037/1082-989X.6.2.161
Field AP. Is the meta-analysis of correlation coefficients accurate when population correlations vary? Psychol Methods. 2005;10:444-467. doi:10.1037/1082-989X.10.4.444
Hall SM, Brannick MT. Comparison of two random-effects methods of meta-analysis. J Appl Psychol. 2002;87:377-389. doi:10.1037/0021-9010.87.2.377
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629
Stanley TD, Doucouliagos H. Meta-regression approximations to reduce publication selection bias. Res Synth Methods. 2014;5(1):60-78. doi:10.1002/jrsm.1095
Sterne JAC, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119-1129. doi:10.1016/S0895-4356(00)00242-0
Stanley TD. Limitations of PET-PEESE and other meta-analysis methods. Soc Psychol Pers Sci. 2017;8(5):581-591. doi:10.1177/1948550617693062
Stanley TD, Doucouliagos H, Ioannidis JP. Finding the power to reduce publication bias. Stat Med. 2017;36(10):1580-1598. doi:10.1002/sim.7228
Irwig L, Macaskill P, Berry G, Glasziou P. Bias in meta-analysis detected by a simple, graphical test. Graphical test is itself biased. BMJ (Clin Res Ed). 1998;316(7129):470 author reply 470-471.
Pustejovsky JE, Rodgers MA. Testing for funnel plot asymmetry of standardized mean differences. Res Synth Methods. 2019;10(1):57-71. doi:10.1002/jrsm.1332
Macaskill P, Walter SD, Irwig L. A comparison of methods to detect publication bias in meta-analysis. Stat Med. 2001;20(4):641-654.
Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):676-680. doi:10.1001/jama.295.6.676