Meta-analyzing partial correlation coefficients using Fisher's z transformation.

Robbie C M van Aert
Author Information
  1. Robbie C M van Aert: Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands. ORCID

Abstract

The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated. First, the sampling variance of the PCC cannot assumed to be known, because the sampling variance is a function of the PCC. Second, the sampling distribution of each primary study's PCC is not normal since PCCs are bounded between -1 and 1. I advocate applying the Fisher's z transformation analogous to applying Fisher's z transformation for Pearson correlation coefficients, because the Fisher's z transformed PCC is independent of the sampling variance and its sampling distribution more closely follows a normal distribution. Reproducing a simulation study by Stanley and Doucouliagos and adding meta-analyses based on Fisher's z transformed PCCs shows that the meta-analysis based on Fisher's z transformed PCCs had lower bias and root mean square error than meta-analyzing PCCs. Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to meta-analyzing PCCs, and I recommend to accompany any meta-analysis based on PCCs with one using Fisher's z transformed PCCs to assess the robustness of the results.

Keywords

References

  1. van Aert RCM, Goos C. A critical reflection on computing the sampling variance of the partial correlation coefficient. Res Synth Methods. 2023;14(3):520-525. doi:10.1002/jrsm.1632
  2. Olkin I, Siotani M. Asymptotic distribution of functions of a correlation matrix. In: Ikeda S, ed. Essays in Probability and Statistics. Shinko Tsusho; 1976:235-251.
  3. Anderson TW. An Introduction to Multivariate Statistical Analysis. 2nd ed. Wiley; 1984.
  4. Stanley TD, Doucouliagos H. Meta-Regression Analysis in Economics and Business. Routledge; 2012.
  5. Stanley TD, Doucouliagos H. Correct standard errors can bias meta-analysis. Res Synth Methods. 2023;14(3):515-519. doi:10.1002/jrsm.1631
  6. Brannick MT, Yang LQ, Cafri G. Comparison of weights for meta-analysis of r and d under realistic conditions. Organ Res Methods. 2011;14(4):587-607. doi:10.1177/1094428110368725
  7. Hong S, Reed WR. Meta-Analysis and Partial Correlation Coefficients: A Matter of Weights. Department of Economics and Finance, University of Canterbury; 2023. Working Papers in Economics 23/07. https://EconPapers.repec.org/RePEc:cbt:econwp:23/07
  8. Polanin JR, Espelage DL, Grotpeter JK, et al. A meta-analysis of longitudinal partial correlations between school violence and mental health, school performance, and criminal or delinquent acts. Psychol Bull. 2021;147(2):115-133. doi:10.1037/bul0000314
  9. Peng P, Lin X, Ünal ZE, et al. Examining the mutual relations between language and mathematics: a meta-analysis. Psychol Bull. 2020;146(7):595-634. doi:10.1037/bul0000231
  10. Chiang JJ, Lam PH, Chen E, Miller GE. Psychological stress during childhood and adolescence and its association with inflammation across the lifespan: a critical review and meta-analysis. Psychol Bull. 2022;148(1-2):27-66. doi:10.1037/bul0000351
  11. Anwar AI, Mang CF. Do remittances cause Dutch disease? A meta-analytic review. Appl Econ. 2022;54(36):4131-4153. doi:10.1080/00036846.2021.2022091
  12. Sun Z, Zhu D. Investigating environmental regulation effects on technological innovation: a meta-regression analysis. Energy Environ. 2021;34:463-492. doi:10.1177/0958305X211069654
  13. Filomena M, Picchio M. Retirement and health outcomes in a meta-analytical framework. J Econ Surv. 2022;12527. doi:10.1111/joes.12527
  14. Jackson D, White IR. When should meta-analysis avoid making hidden normality assumptions? Biom J. 2018;60(6):1040-1058. doi:10.1002/bimj.201800071
  15. Fisher RA. The distribution of the partial correlation coefficient. Metron. 1924;3:329-332.
  16. Borenstein M, Hedges LV. Effect sizes for meta-analysis. In: Cooper H, Hedges LV, Valentine JC, eds. The Handbook of Research Synthesis and Meta-Analysis. 3rd ed. Rusell Sage Foundation; 2019:207-244.
  17. Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press; 1985.
  18. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79. doi:10.1002/jrsm.1164
  19. Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Methods. 2016;8(2):181-198. doi:10.1002/jrsm.1198
  20. Langan D, Higgins JP, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98. doi:10.1002/jrsm.1316
  21. Hartung J. An alternative method for meta-analysis. Biom J. 1999;41(8):901-916.
  22. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20(24):3875-3889. doi:10.1002/sim.1009
  23. Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 2001;20(12):1771-1782. doi:10.1002/sim.791
  24. Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159. doi:10.1002/sim.1262
  25. van Aert RCM, Jackson D. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression. Res Synth Methods. 2019;10(4):515-527. doi:10.1002/jrsm.1356
  26. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14:14. doi:10.1186/1471-2288-14-25
  27. Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med. 2016;35(15):2503-2515. doi:10.1002/sim.6879
  28. Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15:15. doi:10.1186/s12874-015-0091-1
  29. R Core Team. R: A Language and Environment for Statistical Computing. 2023.
  30. Hafdahl AR. Improved Fisher z estimators for univariate random-effects meta-analysis of correlations. Br J Math Stat Psychol. 2009;62(2):233-261. doi:10.1348/000711008X281633
  31. Hafdahl AR. Random-effects meta-analysis of correlations: Monte Carlo evaluation of mean estimators. Br J Math Stat Psychol. 2010;63(1):227-254. doi:10.1348/000711009X431914
  32. Hafdahl AR, Williams MA. Meta-analysis of correlations revisited: attempted replication and extension of Field's (2001) simulation studies. Psychol Methods. 2009;14:24-42. doi:10.1037/a0014697
  33. Schulze R. Meta-Analysis: A Comparison of Approaches. Hogrefe & Huber; 2004.
  34. Hunter JE, Schmidt FL. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. Sage; 2015.
  35. Field AP. Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed- and random-effects methods. Psychol Methods. 2001;6(2):161-180. doi:10.1037/1082-989X.6.2.161
  36. Field AP. Is the meta-analysis of correlation coefficients accurate when population correlations vary? Psychol Methods. 2005;10:444-467. doi:10.1037/1082-989X.10.4.444
  37. Hall SM, Brannick MT. Comparison of two random-effects methods of meta-analysis. J Appl Psychol. 2002;87:377-389. doi:10.1037/0021-9010.87.2.377
  38. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629
  39. Stanley TD, Doucouliagos H. Meta-regression approximations to reduce publication selection bias. Res Synth Methods. 2014;5(1):60-78. doi:10.1002/jrsm.1095
  40. Sterne JAC, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119-1129. doi:10.1016/S0895-4356(00)00242-0
  41. Stanley TD. Limitations of PET-PEESE and other meta-analysis methods. Soc Psychol Pers Sci. 2017;8(5):581-591. doi:10.1177/1948550617693062
  42. Stanley TD, Doucouliagos H, Ioannidis JP. Finding the power to reduce publication bias. Stat Med. 2017;36(10):1580-1598. doi:10.1002/sim.7228
  43. Irwig L, Macaskill P, Berry G, Glasziou P. Bias in meta-analysis detected by a simple, graphical test. Graphical test is itself biased. BMJ (Clin Res Ed). 1998;316(7129):470 author reply 470-471.
  44. Pustejovsky JE, Rodgers MA. Testing for funnel plot asymmetry of standardized mean differences. Res Synth Methods. 2019;10(1):57-71. doi:10.1002/jrsm.1332
  45. Macaskill P, Walter SD, Irwig L. A comparison of methods to detect publication bias in meta-analysis. Stat Med. 2001;20(4):641-654.
  46. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):676-680. doi:10.1001/jama.295.6.676

Grants

  1. VI.Veni.211G.012/Dutch Research Council (NWO)

MeSH Term

Computer Simulation
Meta-Analysis as Topic

Word Cloud

Created with Highcharts 10.0.0PCCsFisher'szsamplingPCCmeta-analysistransformedcorrelationvariancetransformationpartialdistributionbasedmeta-analyzingcoefficienttwovariablesnormalapplyingcoefficientsusingusedquantifylinearrelationshiptakingaccount/controllingResearchersfrequentlysynthesizeassumptionscommonequal-effectrandom-effectsmodeldefinitionviolatedFirstassumedknownfunctionSecondprimarystudy'ssincebounded-11advocateanalogousPearsonindependentcloselyfollowsReproducingsimulationstudyStanleyDoucouliagosaddingmeta-analysesshowslowerbiasrootmeansquareerrorHenceviablealternativerecommendaccompanyoneassessrobustnessresultsMeta-analyzing

Similar Articles

Cited By