The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells.

Anna Sannino, Stefania Romeo, Maria Rosaria Scarfì, Daniele Pinchera, Fulvio Schettino, Mario Alonzo, Mariateresa Allocca, Olga Zeni
Author Information
  1. Anna Sannino: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID
  2. Stefania Romeo: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID
  3. Maria Rosaria Scarfì: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID
  4. Daniele Pinchera: Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy. ORCID
  5. Fulvio Schettino: Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy. ORCID
  6. Mario Alonzo: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID
  7. Mariateresa Allocca: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID
  8. Olga Zeni: National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy. ORCID

Abstract

This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.

Keywords

References

  1. Ballardin, M., Tusa, I., Fontana, N., Monorchio, A., Pelletti, C., Rogovich, A., Barale, R., Scarpato, R.: Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat. Res. 716, 1-9 (2011)
  2. Bianchi, V.: V79 Cytotoxicity test for membrane damage. In: OH, S., Atterwill, C.K. (eds.) Vitro toxicity testing protocols (Methods in molecular biology), pp. 151-161. Humana Press Inc., Totowa (NJ) (1995)
  3. Broom, K.A., Findlay, R., Addison, D.S., Goiceanu, C., Sienkiewicz, Z.: Early-life exposure to pulsed LTE radiofrequency fields causes persistent changes in activity and behavior in C57BL/6 J Mice. Bioelectromagnetics 40, 498-511 (2019)
  4. Cao, Y., Tong, J.: Adaptive response in animals exposed to non-ionizing radiofrequency fields: some underlying mechanisms. Int. J. Environ. Res. Public. Health 11, 4441-4448 (2014)
  5. Choi, J., Min, K., Jeon, S., Kim, N., Pack, J.K., Song, K.: Continuous exposure to 1.7 GHz LTE electromagnetic fields increases intracellular reactive oxygen species to decrease human cell proliferation and induce senescence. Sci. Rep. 10, 9238 (2020)
  6. Cotugno, R., Fortunato, R., Santoro, A., Gallotta, D., Braca, A., De Tommasi, N., Belisario, M.A.: Effect of sesquiterpene lactone coronopilin on leukaemia cell population growth, cell type-specific induction of apoptosis and mitotic catastrophe. Cell Prolif. 45, 53-65 (2012)
  7. Falone, S., Sannino, A., Romeo, S., Zeni, O., Santini, S., Rispoli, R., Amicarelli, F., Scarfì, M.R.: Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci. Rep. 8, 13234 (2018)
  8. Fenech, M.: The in vitro micronucleus technique. Mutat. Res. 455, 81-95 (2000)
  9. Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi, S., Zeiger, E., pHUman MicronNucleus project.: HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. 534, 65-75 (2003)
  10. Gapeyev, A.B., Lukyanova, N.A.: Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophysics 60, 732-738 (2015)
  11. Hasan, I., Amin, T., Alam, M.R., Islam, M.R.: Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi J. Biol. Sci. 28, 2933-2942 (2021)
  12. He, Q., Sun, Y., Zong, L., Tong, J., Cao, Y.: Induction of poly(ADP-ribose) polymerase in mouse bone marrow stromal cells exposed to 900 MHz radiofrequency fields: preliminary observations. BioMed Res. Int. 2016, 1-7 (2016)
  13. He, Q., Zong, L., Sun, Y., Vijayalaxmi, Prihoda, T.J., Tong, J., Cao, Y.: Adaptive response in mouse bone marrow stromal cells exposed to 900MHz radiofrequency fields: impact of poly (ADP-ribose) polymerase (PARP). Mutat. Res. 820, 19-25 (2017)
  14. ICNIRP.: ICNIRP guidelines for limiting exposures to electromagnetic fields (100 kHz-300 GHz). Health Phys. 118, 483-524 (2020)
  15. IEEE. 2019. Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz, IEEE C95.1-2019.
  16. Jagetia, G.C., Adiga, S.K.: Correlation between cell survival and micronuclei formation in V79 cells treated with vindesine before exposure to different doses of γ-radiation. Mutat. Res. 448, 57-68 (2000)
  17. Ji, Y., He, Q., Sun, Y., Tong, J., Cao, Y.: Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: gamma-radiation-induced DNA strand breaks and repair. J. Toxicol. Environ. Health A 79, 419-426 (2016)
  18. Jin, H., Kim, K., Park, G.Y., Kim, M., Lee, H.J., Jeon, S., Kim, J.H., Kim, H.R., Lim, K.M., Lee, Y.S.: The protective effects of EMF-LTE against DNA double-strand break damage in vitro and in vivo. Int. J. Mol. Sci. 22, 5134 (2021)
  19. Kim, J.H., Jeon, S., Choi, H.D., Lee, J.H., Bae, J.S., Kim, N., Kim, H.G., Kim, K.B., Kim, H.R.: Exposure to long-term evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via Akt/mTOR-mediated cellular senescence. J. Toxicol. Environ. Health A 84, 846-857 (2021)
  20. Kim, J.H., Kang, D.J., Bae, J.S., Lee, J.H., Jeon, S., Choi, H.D., Kim, N., Kim, H.G., Kim, H.R.: Activation of matrix metalloproteinases and FoxO3a in HaCaT keratinocytes by radiofrequency electromagnetic field exposure. Sci. Rep. 11, 7680 (2021)
  21. Kirsch-Volders, M., Sofuni, T., Aardema, M., Albertini, S., Eastmond, D., Fenech, M., Ishidate, Jr. M., Kirchner, S., Lorge, E., Morita, T., Norppa, H., Surrallés, J., Vanhauwaert, A., Wakata, A.: Report from the in vitro micronucleus assay working group. Mutat. Res. 540, 153-163 (2003)
  22. Koedrith, P., Seo, Y.R.: Enhancement of the efficacy of mitomycin C-mediated apoptosis in human colon cancer cells with RNAi-based thioredoxin reductase 1 deficiency. Exp. Ther. Med. 2, 873-878 (2011)
  23. LeBel, C.P., Ali, S.F., McKee, M., Bondy, S.C.: Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol. Appl. Pharmacol. 104, 17-24 (1990)
  24. Lv, B., Chen, Z., Wu, T., Shao, Q., Yan, D., Ma, L., Lu, K., Xie, Y.: The alteration of spontaneous low-frequency oscillations caused by acute electromagnetic fields exposure. Clin. Neurophysiol. 125, 277-286 (2014)
  25. Manna, D., Ghosh, R.: Effect of radiofrequency radiation in cultured mammalian cells: a review. Electromagn. Biol. Med. 35, 265-301 (2016)
  26. Mortazavi, S.M.J., Mostafavi-Pour, Z., Daneshmand, M., Zal, F., Zare, R., Mosleh-Shirazi, M.A.: Adaptive response induced by pre-exposure to 915 MHz radiofrequency: a possible role for antioxidant enzyme activity. J. Biomed. Phys. Eng. 7, 137-142 (2017)
  27. Nakayama, T., Nozawa, N., Kawada, C., Yamamoto, S., Ishii, T., Ishizuka, M., Namikawa, T., Ogura, S., Hanazaki, K., Inoue, K., Karashima, T.: Mitomycin C-induced cell cycle arrest enhances 5-aminolevulinic acid-based photodynamic therapy for bladder cancer. Photodiagn. Photodyn. Ther. 31, 101893 (2020)
  28. Oh, J.J., Byun, S.S., Lee, S.E., Choe, G., Hong, S.K.: Effect of electromagnetic waves from mobile phones on spermatogenesis in the era of 4G-LTE. BioMed Res. Int. 2018, 1-8 (2018)
  29. Özdemir, E., Çömelekoğlu, Ü., Degirmenci, E., Bayrak, G., Yildirim, M., Ergenoglu, T., Coşkun Yılmaz, B., Korunur Engiz, B., Yalin, S., Koyuncu, D.D., Ozbay, E.: The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutaneous Ocul. Toxicol. 40, 198-206 (2021)
  30. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335-349 (2013)
  31. Romeo, S., D'Avino, C., Pinchera, D., Zeni, O., Scarfi, M.R., Massa, R.: A waveguide applicator for in vitro exposures to single or multiple ICT frequencies. IEEE Trans. Microwave Theory Tech. 61, 1994-2004 (2013)
  32. Romeo, S., Sannino, A., Zeni, O., Angrisani, L., Massa, R., Scarfi, M.R.: Effects of radiofrequency exposure and co-exposure on human lymphocytes: the influence of signal modulation and bandwidth. IEEE J. Electromagn. RF Microw. Med. Biol. 4, 17-23 (2020)
  33. Sannino, A., Calabrese, M.L., d'Ambrosio, G., Massa, R., Petraglia, G., Mita, P., Sarti, M., Scarfi, M.R.: Evaluation of cytotoxic and genotoxic effects in human peripheral blood leukocytes following exposure to 1950-MHz modulated signal. IEEE Trans. Plasma Sci. 34, 1441-1448 (2006)
  34. Sannino, A., Sarti, M., Reddy, S.B., Prihoda, T.J., Vijayalaxmi, Scarfì, M.R.: Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat. Res. 171, 735-742 (2009)
  35. Sannino, A., Scarfi, M.R., Dufossee, M., Romeo, S., Poeta, L., Prouzet-Mauleon, V., Priault, M., Zeni, O.: Inhibition of autophagy negates radiofrequency-induced adaptive response in SH-SY5Y neuroblastoma cells. Int. J. Mol. Sci. 23, 8414, (2022)
  36. Sannino, A., Zeni, O., Romeo, S., Lioi, M.B., Scarfi, M.R.: Treatment with 3-aminobenzamide negates the radiofrequency-induced adaptive response in two cell models. Int. J. Environ. Res. Public Health 16, 2768 (2019)
  37. Sannino, A., Zeni, O., Romeo, S., Massa, R., Gialanella, G., Grossi, G., Manti, L., Vijayalaxmi, Scarfi, M.R.: Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage. J. Radiat. Res. 55, 210-217 (2014)
  38. Sannino, A., Zeni, O., Romeo, S., Massa, R., Scarfi, M.R.: Adverse and beneficial effects in Chinese hamster lung fibroblast cells following radiofrequency exposure. Bioelectromagnetics 38, 245-254 (2017)
  39. Sannino, A., Zeni, O., Sarti, M., Romeo, S., Reddy, S.B., Belisario, M.A., Prihoda, T.J., Vijayalaxmi, Scarfi, M.R.: Induction of adaptive response in human blood lymphocytes exposed to 900 MHz radiofrequency fields: influence of cell cycle. Int. J. Radiat. Biol. 87, 993-999 (2011)
  40. SCENIHR.: Potential health effects of exposure to electromagnetic fields (EMF). European Commission, Luxembourg (2015)
  41. Schuermann, D., Mevissen, M.: Manmade electromagnetic fields and oxidative stress-biological effects and consequences for health. Int. J. Mol. Sci. 22(7), 3772 (2021)
  42. Souffi, S., Lameth, J., Gaucher, Q., Arnaud-Cormos, D., Lévêque, P., Edeline, J.M., Mallat, M.: Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Sci. Rep. 12, 4063 (2022)
  43. Vecsei, Z., Knakker, B., Juhász, P., Thuróczy, G., Trunk, A., Hernádi, I.: Short-term radiofrequency exposure from new generation mobile phones reduces EEG alpha power with no effects on cognitive performance. Sci. Rep. 8, 18010 (2018)
  44. Vijayalaxmi, Cao, Y., Scarfi, M.R.: Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: a review and gaps in knowledge. Mutat. Res. 760, 36-45 (2014)
  45. Vijayalaxmi, Prihoda, T.J.: Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011). Mutat. Res. 749, 1-16 (2012)
  46. Vijayalaxmi, Prihoda, T.J.: Comprehensive review of quality of publications and meta-analysis of genetic damage in mammalian cells exposed to non-ionizing radiofrequency fields. Radiat. Res. 191, 20-30 (2019)
  47. Wei, Y., Yang, J., Chen, Z., Wu, T., Lv, B.: Modulation of resting-state brain functional connectivity by exposure to acute fourth-generation long-term evolution electromagnetic field: an fMRI study. Bioelectromagnetics 40, 42-51 (2019)
  48. Xu, S., Chen, G., Chen, C., Sun, C., Zhang, D., Murbach, M., Kuster, N., Zeng, Q., Xu, Z.: Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One 8, e54906 (2013)
  49. Yang, L., Chen, Q., Lv, B., Wu, T.: Long-term evolution electromagnetic fields exposure modulates the resting state EEG on alpha and beta bands. Clin. EEG Neurosci. 48, 168-175 (2017)
  50. Yang, L., Zhang, C., Chen, Z., Li, C., Wu, T.: Functional and network analyses of human exposure to long-term evolution signal. Environ. Sci. Pollut. Res. 28, 5755-5773 (2021)
  51. Yu, G., Tang, Z., Chen, H., Chen, Z., Wang, L., Cao, H., Wang, G., Xing, J., Shen, H., Cheng, Q., Li, D., Wang, G., Xiang, Y., Guan, Y., Zhu, Y., Liu, Z., Bai, Z.: Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats. Sci. Total Environ. 698, 133860 (2020)
  52. Zeni, O., Romeo, S., Sannino, A., Palumbo, R., Scarfì, M.R.: Evidence of bystander effect induced by radiofrequency radiation in a human neuroblastoma cell line. Environ. Res. 196, 110935 (2021)
  53. Zeni, O., Sannino, A., Romeo, S., Massa, R., Sarti, M., Reddy, A.B., Prihoda, T.J., Vijayalaxmi, Scarfì, M.R.: Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate. Mutat. Res. 747, 29-35 (2012)
  54. Zong, C., Ji, Y., He, Q., Zhu, S., Qin, F., Tong, J., Cao, Y.: Adaptive response in mice exposed to 900 MHZ radiofrequency fields: bleomycin-induced DNA and oxidative damage/repair. Int. J. Radiat. Biol. 91, 270-276 (2015)

Grants

  1. Grant 2017SAKZ78 - PRIN Project MIRABILIS/Ministero dell'Università e della Ricerca

MeSH Term

Cricetinae
Animals
Cricetulus
Mitomycin
Reactive Oxygen Species
Lung
Fibroblasts

Chemicals

Mitomycin
Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0radiofrequencyexposureLTEeffectssignalMMCconditionsSARmicronucleiformationcellcoexposureMMC-induced1950 MHzalonemitomycin-CChinesehamsterlungfibroblastV79cellsexposed0125 W/kgdamagecycleprogressiondetectedexperimentalinvestigatedtreatmentpre-exposuremodifyresultedlevelseffectstudyaimsinvestigatecellularlong-termevolutionadministeredcombinationwell-knowncytotoxicagentexposed/shamwaveguide-basedsystemstrictlycontrolledelectromagneticenvironmentalparametersspecificabsorptionrate3Chromosomaloxidativestressreactiveoxygenspecies[ROS]analyzeddifferencessamplessham-controlsfollowingtestedbiologicalendpointsfollowed3 hPre-exposure20 h3 W/kgnumberinducedsignificantreductionAbsencealsoCWusedROSsignificantlydecreasedproliferationaffectedcoexposuresresultsreportedprovideevidencedirectMoreoversupportpreviousfindingscapabilityinduceprotectionsubsequenttoxickeyrolemodulatedsignalsadoptedelicitingvitro

Similar Articles

Cited By

No available data.