Drivers of Decadal Carbon Fluxes Across Temperate Ecosystems.

Ankur R Desai, Bailey A Murphy, Susanne Wiesner, Jonathan Thom, Brian J Butterworth, Nikaan Koupaei-Abyazani, Andi Muttaqin, Sreenath Paleri, Ammara Talib, Jess Turner, James Mineau, Aronne Merrelli, Paul Stoy, Ken Davis
Author Information
  1. Ankur R Desai: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  2. Bailey A Murphy: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  3. Susanne Wiesner: Department of Plant and Earth Science University of Wisconsin-River Falls River Falls WI USA. ORCID
  4. Jonathan Thom: Space Science and Engineering Center University of Wisconsin-Madison Madison WI USA. ORCID
  5. Brian J Butterworth: Cooperative Institute for Research in Environmental Sciences CU Boulder Boulder CO USA. ORCID
  6. Nikaan Koupaei-Abyazani: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  7. Andi Muttaqin: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  8. Sreenath Paleri: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  9. Ammara Talib: Department of Civil and Environmental Engineering University of Wisconsin-Madison Madison WI USA. ORCID
  10. Jess Turner: Freshwater & Marine Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  11. James Mineau: Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA. ORCID
  12. Aronne Merrelli: Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA. ORCID
  13. Paul Stoy: Department of Plant and Earth Science University of Wisconsin-River Falls River Falls WI USA. ORCID
  14. Ken Davis: Department of Meteorology Pennsylvania State University University Park PA USA. ORCID

Abstract

Long-running eddy covariance flux towers provide insights into how the terrestrial carbon cycle operates over multiple timescales. Here, we evaluated variation in net ecosystem exchange (NEE) of carbon dioxide (CO) across the Chequamegon Ecosystem-Atmosphere Study AmeriFlux core site cluster in the upper Great Lakes region of the USA from 1997 to 2020. The tower network included two mature hardwood forests with differing management regimes (US-WCr and US-Syv), two fen wetlands with varying levels of canopy sheltering and vegetation (US-Los and US-ALQ), and a very tall (400 m) landscape-level tower (US-PFa). Together, they provided over 70 site-years of observations. The 19-tower Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 campaign centered around US-PFa provided additional information on the spatial variation of NEE. Decadal variability was present in all long-term sites, but cross-site coherence in interannual NEE in the earlier part of the record became weaker with time as non-climatic factors such as local disturbances likely dominated flux time series. Average decadal NEE at the tall tower transitioned from carbon source to sink to near neutral over 24 years. Respiration had a greater effect than photosynthesis on driving variations in NEE at all sites. Declining snowfall offset potential increases in assimilation from warmer springs, as less-insulated soils delayed start of spring green-up. Higher CO increased maximum net assimilation parameters but not total gross primary productivity. Stand-scale sites were larger net sinks than the landscape tower. Clustered, long-term carbon flux observations provide value for understanding the diverse links between carbon and climate and the challenges of upscaling these responses across space.

Keywords

References

  1. Ecol Appl. 2009 Jun;19(4):1061-78 [PMID: 19544743]
  2. Front Ecol Environ. 2021 Feb;19(1):57-65 [PMID: 35874182]
  3. New Phytol. 2014 Apr;202(1):106-115 [PMID: 24372373]
  4. New Phytol. 2011 Sep;191(4):926-941 [PMID: 21762163]
  5. Oecologia. 2011 Nov;167(3):599-611 [PMID: 21874332]
  6. Nature. 2021 Oct;598(7881):468-472 [PMID: 34552242]
  7. Nat Commun. 2022 Feb 21;13(1):989 [PMID: 35190562]
  8. New Phytol. 2019 Jan;221(1):32-49 [PMID: 29983005]
  9. Glob Chang Biol. 2014 Jan;20(1):170-82 [PMID: 24323535]
  10. J Geophys Res Biogeosci. 2022 Dec;127(12):e2022JG007014 [PMID: 37502709]
  11. Glob Chang Biol. 2018 Nov;24(11):5176-5187 [PMID: 30067888]
  12. Glob Chang Biol. 2020 Dec;26(12):7099-7111 [PMID: 32998181]
  13. Glob Chang Biol. 2022 Jun;28(11):3489-3514 [PMID: 35315565]
  14. Oecologia. 2011 Feb;165(2):533-44 [PMID: 21104278]
  15. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7): [PMID: 33558233]
  16. Glob Chang Biol. 2020 Jan;26(1):300-318 [PMID: 31670435]
  17. Tree Physiol. 2003 Dec;23(18):1263-70 [PMID: 14652226]
  18. Glob Chang Biol. 2020 Jan;26(1):242-260 [PMID: 31461544]
  19. Glob Chang Biol. 2022 Jun;28(12):3778-3794 [PMID: 35253952]
  20. Plant Cell Environ. 2015 Nov;38(11):2299-312 [PMID: 25850935]
  21. Glob Chang Biol. 2015 Jul;21(7):2603-2611 [PMID: 25731862]
  22. Funct Plant Biol. 2005 Apr;32(2):87-105 [PMID: 32689114]
  23. Plant Cell Environ. 2021 Jan;44(1):156-170 [PMID: 33034374]
  24. Sci Data. 2020 Jul 9;7(1):225 [PMID: 32647314]
  25. Glob Chang Biol. 2019 Oct;25(10):3381-3394 [PMID: 31197940]
  26. Sci Adv. 2021 Apr 9;7(15): [PMID: 33837072]
  27. Glob Chang Biol. 2022 May;28(9):2910-2929 [PMID: 35112446]
  28. Ecol Appl. ;24(6):1478-89 [PMID: 29160668]
  29. Science. 2001 Nov 23;294(5547):1688-91 [PMID: 11721047]
  30. Photosynth Res. 2014 Feb;119(1-2):31-47 [PMID: 24078353]
  31. Sci Rep. 2018 Mar 2;8(1):3927 [PMID: 29500377]
  32. Proc Natl Acad Sci U S A. 1920 Jul;6(7):434-5 [PMID: 16576515]
  33. Sci Total Environ. 2019 Oct 20;688:479-485 [PMID: 31254813]
  34. Glob Chang Biol. 2012 Jan 6;: [PMID: 23505127]
  35. Glob Chang Biol. 2017 Oct;23(10):4204-4221 [PMID: 28295911]
  36. Glob Chang Biol. 2021 Nov;27(22):5806-5817 [PMID: 34431180]
  37. J Geophys Res Biogeosci. 2016 Aug;121(8):2186-2198 [PMID: 27774367]
  38. Nat Commun. 2015 Apr 23;6:6911 [PMID: 25903224]
  39. Plant Sci. 2011 Jan;180(1):157-67 [PMID: 21421357]
  40. Stat Med. 2003 Oct 15;22(19):3055-71 [PMID: 12973787]
  41. Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2115627119 [PMID: 35238668]
  42. Glob Chang Biol. 2016 Feb;22(2):682-703 [PMID: 26598217]
  43. Nature. 2017 Jan 26;541(7638):516-520 [PMID: 28092919]
  44. Glob Chang Biol. 2020 Apr;26(4):2390-2402 [PMID: 32017317]
  45. New Phytol. 2020 Jun;226(6):1550-1566 [PMID: 32064613]
  46. Nature. 2021 Apr;592(7852):65-69 [PMID: 33790442]
  47. J Exp Bot. 2021 Apr 2;72(8):2822-2844 [PMID: 33619527]
  48. Glob Chang Biol. 2019 Jun;25(6):1922-1940 [PMID: 30884039]
  49. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9557-62 [PMID: 27503880]
  50. Sci Data. 2018 Mar 13;5:180028 [PMID: 29533393]
  51. Tree Physiol. 2009 Nov;29(11):1457-65 [PMID: 19773337]
  52. Tree Physiol. 2003 Sep;23(13):931-6 [PMID: 14532017]
  53. Glob Chang Biol. 2014 Dec;20(12):3600-9 [PMID: 24890749]
  54. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1474-8 [PMID: 21220333]
  55. Plant Cell Environ. 2015 Sep;38(9):1725-36 [PMID: 25142260]

Word Cloud

Created with Highcharts 10.0.0carbonNEEtowerfluxnetsiteseddycovarianceprovidevariationCOacrossChequamegonStudyAmeriFluxtwoforestswetlandstallUS-PFaprovidedobservationsDecadallong-termtimeassimilationLong-runningtowersinsightsterrestrialcycleoperatesmultipletimescalesevaluatedecosystemexchangedioxideEcosystem-AtmospherecoresiteclusterupperGreatLakesregionUSA19972020networkincludedmaturehardwooddifferingmanagementregimesUS-WCrUS-SyvfenvaryinglevelscanopyshelteringvegetationUS-LosUS-ALQ400 mlandscape-levelTogether70site-years19-towerHeterogenousEcosystemEnergy-balanceEnabledHigh-densityExtensiveArrayDetectors2019campaigncenteredaroundadditionalinformationspatialvariabilitypresentcross-sitecoherenceinterannualearlierpartrecordbecameweakernon-climaticfactorslocaldisturbanceslikelydominatedseriesAveragedecadaltransitionedsourcesinknearneutral24 yearsRespirationgreatereffectphotosynthesisdrivingvariationsDecliningsnowfalloffsetpotentialincreaseswarmerspringsless-insulatedsoilsdelayedstartspringgreen-upHigherincreasedmaximumparameterstotalgrossprimaryproductivityStand-scalelargersinkslandscapeClusteredvalueunderstandingdiverselinksclimatechallengesupscalingresponsesspaceDriversCarbonFluxesAcrossTemperateEcosystemsCHEESEHEAD19fluxes

Similar Articles

Cited By