Harnessing neutrophil plasticity for HCC immunotherapy.

Erik Ramon-Gil, Daniel Geh, Jack Leslie
Author Information
  1. Erik Ramon-Gil: Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K. ORCID
  2. Daniel Geh: Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K. ORCID
  3. Jack Leslie: Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K. ORCID

Abstract

Neutrophils, until recently, have typically been considered a homogeneous population of terminally differentiated cells with highly conserved functions in homeostasis and disease. In hepatocellular carcinoma (HCC), tumour-associated neutrophils (TANs) are predominantly thought to play a pro-tumour role, promoting all aspects of HCC development and progression. Recent developments in single-cell technologies are now providing a greater insight and appreciation for the level of cellular heterogeneity displayed by TANs in the HCC tumour microenvironment, which we have been able to correlate with other TAN signatures in datasets for gastric cancer, pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). TANs with classical pro-tumour signatures have been identified as well as neutrophils primed for anti-tumour functions that, if activated and expanded, could become a potential therapeutic approach. In recent years, therapeutic targeting of neutrophils in HCC has been typically focused on impairing the recruitment of pro-tumour neutrophils. This has now been coupled with immune checkpoint blockade with the aim to stimulate lymphocyte-mediated anti-tumour immunity whilst impairing neutrophil-mediated immunosuppression. As a result, neutrophil-directed therapies are now entering clinical trials for HCC. Pharmacological targeting along with ex vivo reprogramming of neutrophils in HCC patients is, however, in its infancy and a greater understanding of neutrophil heterogeneity, with a view to exploit it, may pave the way for improved immunotherapy outcomes. This review will cover the recent developments in our understanding of neutrophil heterogeneity in HCC and how neutrophils can be harnessed to improve HCC immunotherapy.

Keywords

References

  1. Nat Immunol. 2021 Sep;22(9):1093-1106 [PMID: 34282331]
  2. Cancers (Basel). 2019 Aug 01;11(8): [PMID: 31374929]
  3. Oncotarget. 2016 Dec 27;7(52):86039-86050 [PMID: 27852071]
  4. Cancer Cell. 2022 Dec 12;40(12):1503-1520.e8 [PMID: 36368318]
  5. J Clin Invest. 2014 Dec;124(12):5466-80 [PMID: 25384214]
  6. Immunity. 2010 Nov 24;33(5):657-70 [PMID: 21094463]
  7. Cancer Cell. 2023 Feb 13;41(2):356-372.e10 [PMID: 36706760]
  8. Cancer Cell. 2016 Jun 13;29(6):832-845 [PMID: 27265504]
  9. Cell Oncol (Dordr). 2021 Dec;44(6):1425-1437 [PMID: 34791638]
  10. Nat Commun. 2021 May 17;12(1):2856 [PMID: 34001893]
  11. Thorac Cancer. 2018 Jul;9(7):775-784 [PMID: 29722145]
  12. Cell. 2020 Oct 15;183(2):377-394.e21 [PMID: 32976798]
  13. Gut. 2022 Apr 27;: [PMID: 35477863]
  14. Gastroenterology. 2020 Jun;158(8):2250-2265.e20 [PMID: 32060001]
  15. Nature. 2022 Dec;612(7938):141-147 [PMID: 36352227]
  16. J Hepatol. 2022 Apr;76(4):862-873 [PMID: 34902530]
  17. Int J Oral Sci. 2021 Nov 15;13(1):36 [PMID: 34782601]
  18. Blood Cancer J. 2021 Apr 6;11(4):69 [PMID: 33824268]
  19. Clin Cancer Res. 2022 Jun 1;28(11):2449-2460 [PMID: 35302601]
  20. Cell Prolif. 2020 Mar;53(3):e12772 [PMID: 32003505]
  21. Cell. 2013 May 23;153(5):1025-35 [PMID: 23706740]
  22. Mol Cell. 2021 Aug 19;81(16):3339-3355.e8 [PMID: 34352206]
  23. Cancers (Basel). 2020 Nov 15;12(11): [PMID: 33203146]
  24. Lab Invest. 2020 Sep;100(9):1140-1157 [PMID: 32457351]
  25. Cancer Discov. 2016 Jan;6(1):80-95 [PMID: 26701088]
  26. J Hepatol. 2020 Nov;73(5):1118-1130 [PMID: 32505533]
  27. J Exp Med. 2022 Jun 6;219(6): [PMID: 35522219]
  28. Gut. 2023 May;72(5):958-971 [PMID: 35688610]
  29. Cytotherapy. 2017 Nov;19(11):1256-1269 [PMID: 28916227]
  30. Semin Immunol. 2021 Oct;57:101581 [PMID: 34922817]
  31. Int J Cancer. 2015 May 15;136(10):2264-72 [PMID: 25353388]
  32. Cell. 2019 Oct 31;179(4):829-845.e20 [PMID: 31675496]
  33. Int J Mol Sci. 2020 Jul 13;21(14): [PMID: 32668617]
  34. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  35. Front Pharmacol. 2022 Apr 20;13:862125 [PMID: 35517812]
  36. Nat Rev Cancer. 2020 Sep;20(9):485-503 [PMID: 32694624]
  37. PLoS One. 2015 Sep 28;10(9):e0139237 [PMID: 26414070]
  38. Aging (Albany NY). 2021 May 26;13(10):13405-13420 [PMID: 34038868]
  39. Cancer Cell. 2016 Jul 11;30(1):120-135 [PMID: 27374224]
  40. Front Nutr. 2022 Nov 15;9:976216 [PMID: 36458178]
  41. Chem Biol. 2015 Sep 17;22(9):1197-205 [PMID: 26364929]
  42. Cell Rep. 2022 Jul 19;40(3):111128 [PMID: 35858579]
  43. Nature. 2019 Nov;575(7783):512-518 [PMID: 31597160]
  44. Oncoimmunology. 2021 Nov 13;10(1):1997385 [PMID: 34858725]
  45. Proc Natl Acad Sci U S A. 2021 Jun 15;118(24): [PMID: 34099557]
  46. Front Cell Dev Biol. 2022 Jan 20;10:840894 [PMID: 35127689]
  47. Ann Transl Med. 2022 Nov;10(21):1170 [PMID: 36467341]
  48. Mol Cancer. 2017 Aug 15;16(1):137 [PMID: 28810877]
  49. Cancer Cell. 2019 Oct 14;36(4):418-430.e6 [PMID: 31588021]
  50. Oncogene. 2021 Dec;40(50):6748-6758 [PMID: 34663877]
  51. Sci Transl Med. 2019 Dec 4;11(521): [PMID: 31801883]
  52. Oncoimmunology. 2012 Oct 1;1(7):1156-1158 [PMID: 23170262]
  53. Front Mol Biosci. 2019 Dec 19;6:148 [PMID: 31921891]
  54. J Hepatol. 2021 Dec;75(6):1397-1408 [PMID: 34216724]
  55. Sci Transl Med. 2022 Feb 2;14(630):eabk2756 [PMID: 35108060]
  56. J Hepatol. 2022 Dec;77(6):1598-1606 [PMID: 36208844]
  57. Immunol Rev. 2023 Mar;314(1):280-301 [PMID: 36331258]
  58. J Immunother Cancer. 2023 Feb;11(2): [PMID: 36759014]
  59. Nature. 2021 Apr;592(7854):450-456 [PMID: 33762733]
  60. Cell Death Dis. 2022 Feb 4;13(2):117 [PMID: 35121729]
  61. Biomark Insights. 2016 Feb 16;11:31-40 [PMID: 26917947]
  62. N Engl J Med. 2020 May 14;382(20):1894-1905 [PMID: 32402160]
  63. Cell Rep. 2015 Feb 3;10(4):562-73 [PMID: 25620698]
  64. Nat Rev Clin Oncol. 2022 Mar;19(3):151-172 [PMID: 34764464]
  65. Immunity. 2020 Aug 18;53(2):303-318.e5 [PMID: 32579887]
  66. J Exp Clin Cancer Res. 2020 Jul 29;39(1):144 [PMID: 32727517]
  67. Oncogene. 2017 Apr;36(15):2095-2104 [PMID: 27721403]
  68. Breast Cancer Res Treat. 2020 Jun;181(3):541-551 [PMID: 32350677]
  69. Immunity. 2019 Feb 19;50(2):390-402.e10 [PMID: 30709741]
  70. Clin Transl Immunology. 2020 Nov 07;9(11):e1185 [PMID: 33204424]
  71. Nat Commun. 2015 Apr 16;6:6818 [PMID: 25879839]
  72. Biosci Rep. 2021 Apr 30;41(4): [PMID: 33834191]
  73. Hepatol Commun. 2019 Oct 30;3(12):1598-1625 [PMID: 31832570]
  74. Cell. 2021 Jan 21;184(2):404-421.e16 [PMID: 33357445]
  75. EBioMedicine. 2021 Apr;66:103315 [PMID: 33819739]
  76. Cell. 2020 Nov 25;183(5):1282-1297.e18 [PMID: 33098771]
  77. Nat Immunol. 2020 Sep;21(9):1119-1133 [PMID: 32719519]
  78. Mol Cancer. 2021 Apr 4;20(1):62 [PMID: 33814009]
  79. Protein Cell. 2023 Jun 28;14(7):513-531 [PMID: 36921037]
  80. Nat Rev Gastroenterol Hepatol. 2022 Apr;19(4):257-273 [PMID: 35022608]
  81. Cancers (Basel). 2021 Jul 20;13(14): [PMID: 34298839]
  82. Thorac Cancer. 2021 Oct;12(20):2698-2709 [PMID: 34423566]
  83. Br J Cancer. 2018 Jul;119(1):52-64 [PMID: 29899394]
  84. Cell. 2017 Jun 15;169(7):1342-1356.e16 [PMID: 28622514]
  85. Gut. 2023 Aug;72(8):1555-1567 [PMID: 36283801]
  86. Nature. 2019 Aug;572(7768):199-204 [PMID: 31292543]
  87. J Leukoc Biol. 2021 Nov;110(5):893-905 [PMID: 33565160]
  88. Pediatr Blood Cancer. 2017 May;64(5): [PMID: 27786411]
  89. Nat Rev Immunol. 2022 Mar;22(3):173-187 [PMID: 34230649]
  90. J Immunother Cancer. 2022 Jun;10(6): [PMID: 35728876]
  91. Nat Rev Immunol. 2005 Dec;5(12):953-64 [PMID: 16322748]
  92. Front Cell Dev Biol. 2021 May 26;9:689613 [PMID: 34124076]
  93. Cancers (Basel). 2022 Apr 06;14(7): [PMID: 35406623]
  94. Proteomics. 2006 Jan;6(2):538-46 [PMID: 16342242]
  95. Blood. 2010 Jul 29;116(4):625-7 [PMID: 20410504]
  96. Onco Targets Ther. 2019 Oct 03;12:8139-8149 [PMID: 31632065]
  97. Nat Methods. 2006 Apr;3(4):287-93 [PMID: 16554834]
  98. Nat Rev Drug Discov. 2020 Apr;19(4):253-275 [PMID: 31969717]
  99. Nature. 2020 Jun;582(7810):109-114 [PMID: 32494068]

Grants

  1. 23390/Cancer Research UK
  2. C18342/A23390/Cancer Research UK
  3. DRCRPG-NOV22/100007/Cancer Research UK
  4. MR/R023026/1/Medical Research Council

MeSH Term

Humans
Carcinoma, Hepatocellular
Neutrophils
Liver Neoplasms
Carcinoma, Non-Small-Cell Lung
Lung Neoplasms
Immunotherapy
Tumor Microenvironment

Word Cloud

Created with Highcharts 10.0.0HCCneutrophilsimmunotherapyTANspro-tumournowheterogeneityneutrophiltypicallyfunctionshepatocellularcarcinomadevelopmentsgreatersignaturescanceranti-tumourtherapeuticrecenttargetingimpairingunderstandingNeutrophilsrecentlyconsideredhomogeneouspopulationterminallydifferentiatedcellshighlyconservedhomeostasisdiseasetumour-associatedpredominantlythoughtplayrolepromotingaspectsdevelopmentprogressionRecentsingle-celltechnologiesprovidinginsightappreciationlevelcellulardisplayedtumourmicroenvironmentablecorrelateTANdatasetsgastricpancreaticductaladenocarcinomaPDACnon-smallcelllungNSCLCclassicalidentifiedwellprimedactivatedexpandedbecomepotentialapproachyearsfocusedrecruitmentcoupledimmunecheckpointblockadeaimstimulatelymphocyte-mediatedimmunitywhilstneutrophil-mediatedimmunosuppressionresultneutrophil-directedtherapiesenteringclinicaltrialsPharmacologicalalongexvivoreprogrammingpatientshoweverinfancyviewexploitmaypavewayimprovedoutcomesreviewwillcovercanharnessedimproveHarnessingplasticity

Similar Articles

Cited By