River Basin Export Reduction Optimization Support Tool; a tool to screen options for reducing nutrient loads while minimizing cost.

C Chamberlin, M Ten Brink, K Munson, A Le, N Detenbeck
Author Information
  1. C Chamberlin: Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Narragansett, Rhode Island, USA.
  2. M Ten Brink: Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island, USA.
  3. K Munson: ICF, Inc., Cambridge, Massachusetts, USA.
  4. A Le: ICF, Inc., Cambridge, Massachusetts, USA.
  5. N Detenbeck: Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island, USA.

Abstract

Excess loading of nitrogen and phosphorus to river networks causes environmental harm, but reducing loads from large river basins is difficult and expensive. We develop a new tool, the River Basin Export Reduction Optimization Support Tool (RBEROST) to identify least-cost combinations of management practices that will reduce nutrient loading to target levels in downstream and mid-network waterbodies. We demonstrate the utility of the tool in a case study in the Upper Connecticut River basin in New England, USA. The total project cost of optimized lowest-cost plans ranged from $18.0 million to $41.0 million per year over 15 years depending on user specifications. Plans include both point source and non-point source management practices, and most costs are associated with urban stormwater practices. Adding a 2% margin of safety to loading targets improved estimated probability of success from 37.5% to 99%. The large spatial scale of RBEROST, and the consideration of both point and non-point source contributions of nutrients, makes it well suited as an initial screening tool in watershed planning.

Keywords

References

  1. Sci Total Environ. 2020 Feb 10;703:134620 [PMID: 31767330]
  2. J Environ Manage. 2021 Jan 1;277:111409 [PMID: 33010656]
  3. Sci Data. 2020 Jun 29;7(1):207 [PMID: 32601298]
  4. Environ Int. 2019 Sep;130:104821 [PMID: 31326868]
  5. J Environ Manage. 2020 Sep 15;270:110898 [PMID: 32721333]
  6. Environ Manage. 2021 Apr;67(4):623-631 [PMID: 33555407]
  7. Sci Total Environ. 2019 Nov 10;690:1005-1018 [PMID: 31302534]
  8. J Environ Qual. 2015 May;44(3):754-67 [PMID: 26024256]
  9. Sci Total Environ. 2017 Dec 31;607-608:413-432 [PMID: 28704668]
  10. Nature. 2009 Sep 24;461(7263):472-5 [PMID: 19779433]
  11. Remote Sens Environ. 2017;191:328-341 [PMID: 31346298]
  12. J Environ Manage. 2008 Aug;88(3):437-47 [PMID: 17467148]
  13. J Am Water Resour Assoc. 2007 Feb;43(1):41-59 [PMID: 22457565]
  14. Sci Total Environ. 2021 Mar 1;758:143659 [PMID: 33279201]
  15. Ann N Y Acad Sci. 2008;1134:61-96 [PMID: 18566090]
  16. Science. 2001 Apr 6;292(5514):86-90 [PMID: 11292868]

Grants

  1. 68HE0D18D0001/EPA
  2. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0sourcetoolpracticesloadingRivermanagementpointriverreducingloadslargeBasinExportReductionOptimizationSupportToolRBEROSTnutrientcost0millionnon-pointnutrientspollutionExcessnitrogenphosphorusnetworkscausesenvironmentalharmbasinsdifficultexpensivedevelopnewidentifyleast-costcombinationswillreducetargetlevelsdownstreammid-networkwaterbodiesdemonstrateutilitycasestudyUpperConnecticutbasinNewEnglandUSAtotalprojectoptimizedlowest-costplansranged$18$41peryear15yearsdependinguserspecificationsPlansincludecostsassociatedurbanstormwaterAdding2%marginsafetytargetsimprovedestimatedprobabilitysuccess375%99%spatialscaleconsiderationcontributionsmakeswellsuitedinitialscreeningwatershedplanningscreenoptionsminimizingbestBMPsmodelingnonpointoptimizationrivers/streamsuncertaintyanalysiswaterqualitywatersheds

Similar Articles

Cited By

No available data.