Screening in serum-derived medium reveals differential response to compounds targeting metabolism.

Keene L Abbott, Ahmed Ali, Dominick Casalena, Brian T Do, Raphael Ferreira, Jaime H Cheah, Christian K Soule, Amy Deik, Tenzin Kunchok, Daniel R Schmidt, Steffen Renner, Sophie E Honeder, Michelle Wu, Sze Ham Chan, Tenzin Tseyang, Andrew T Stoltzfus, Sarah L J Michel, Daniel Greaves, Peggy P Hsu, Christopher W Ng, Chelsea J Zhang, Ali Farsidjani, Johnathan R Kent, Maria Lucia L Madariaga, Iva Monique T Gramatikov, Nicholas J Matheson, Caroline A Lewis, Clary B Clish, Matthew G Rees, Jennifer A Roth, Lesley Mathews Griner, Alexander Muir, Douglas S Auld, Matthew G Vander Heiden
Author Information
  1. Keene L Abbott: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  2. Ahmed Ali: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  3. Dominick Casalena: Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA.
  4. Brian T Do: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA.
  5. Raphael Ferreira: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
  6. Jaime H Cheah: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  7. Christian K Soule: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  8. Amy Deik: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  9. Tenzin Kunchok: Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA.
  10. Daniel R Schmidt: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
  11. Steffen Renner: Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland.
  12. Sophie E Honeder: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
  13. Michelle Wu: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  14. Sze Ham Chan: Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA.
  15. Tenzin Tseyang: Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA.
  16. Andrew T Stoltzfus: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
  17. Sarah L J Michel: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
  18. Daniel Greaves: Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
  19. Peggy P Hsu: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA.
  20. Christopher W Ng: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  21. Chelsea J Zhang: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  22. Ali Farsidjani: Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA.
  23. Johnathan R Kent: Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
  24. Maria Lucia L Madariaga: Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
  25. Iva Monique T Gramatikov: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
  26. Nicholas J Matheson: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
  27. Caroline A Lewis: Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA.
  28. Clary B Clish: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  29. Matthew G Rees: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  30. Jennifer A Roth: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  31. Lesley Mathews Griner: Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA.
  32. Alexander Muir: Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA.
  33. Douglas S Auld: Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA.
  34. Matthew G Vander Heiden: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA. Electronic address: mvh@mit.edu.

Abstract

A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.

Keywords

References

  1. Cancer Chemother Pharmacol. 2010 May;65(6):1165-72 [PMID: 19789873]
  2. Drug Metab Pharmacokinet. 2009;24(4):300-7 [PMID: 19745557]
  3. Cancer Cell. 2017 Jul 10;32(1):9-25 [PMID: 28697345]
  4. Nature. 2017 Jun 7;546(7657):234-242 [PMID: 28593971]
  5. Invest New Drugs. 2008 Feb;26(1):45-51 [PMID: 17924057]
  6. Cancer Res. 1981 Apr;41(4):1324-8 [PMID: 7214322]
  7. Neurology. 1966 Nov;16(11):1064-70 [PMID: 5950917]
  8. Cancer Res. 1987 Sep 15;47(18):4924-31 [PMID: 3621184]
  9. Cell Metab. 2019 May 7;29(5):1166-1181.e6 [PMID: 30799286]
  10. Nat Commun. 2017 Jul 07;8:16031 [PMID: 28685754]
  11. Sci Adv. 2019 Jan 02;5(1):eaau7314 [PMID: 30613774]
  12. Cell. 2015 Sep 10;162(6):1229-41 [PMID: 26321679]
  13. Eur J Cancer. 2005 Mar;41(5):702-7 [PMID: 15763645]
  14. Nat Commun. 2017 Jul 03;8:15965 [PMID: 28671190]
  15. Sci Signal. 2020 Mar 24;13(624): [PMID: 32209698]
  16. Cell Metab. 2016 Nov 8;24(5):716-727 [PMID: 27746050]
  17. Nat Metab. 2021 Nov;3(11):1512-1520 [PMID: 34799699]
  18. Nature. 2014 Apr 3;508(7494):108-12 [PMID: 24670634]
  19. Sci Transl Med. 2018 May 23;10(442): [PMID: 29794058]
  20. Cell Metab. 2015 Jul 7;22(1):31-53 [PMID: 26118927]
  21. Cell Metab. 2016 Mar 8;23(3):517-28 [PMID: 26853747]
  22. Nat Commun. 2017 Jan 10;8:13989 [PMID: 28071763]
  23. Mol Cancer Ther. 2020 Feb;19(2):397-408 [PMID: 31594823]
  24. PLoS One. 2011 Feb 16;6(2):e16957 [PMID: 21359215]
  25. Nat Cell Biol. 2019 Jan;21(1):63-71 [PMID: 30602761]
  26. Nat Biotechnol. 2016 Apr;34(4):419-23 [PMID: 26928769]
  27. Clin Cancer Res. 2002 Sep;8(9):2843-50 [PMID: 12231525]
  28. Nat Cell Biol. 2015 Dec;17(12):1556-68 [PMID: 26595383]
  29. Cell. 2017 Feb 9;168(4):657-669 [PMID: 28187287]
  30. Sci Signal. 2021 Jun 08;14(686): [PMID: 34103421]
  31. Cell Chem Biol. 2017 Sep 21;24(9):1161-1180 [PMID: 28938091]
  32. Nature. 2021 Nov;599(7884):302-307 [PMID: 34671163]
  33. Sci Adv. 2022 Jan 21;8(3):eabg6383 [PMID: 35061540]
  34. In Vitro Cell Dev Biol. 1988 Sep;24(9):878-84 [PMID: 3170445]
  35. Front Endocrinol (Lausanne). 2017 Sep 29;8:261 [PMID: 29085336]
  36. Cell. 2016 Sep 22;167(1):171-186.e15 [PMID: 27641501]
  37. Elife. 2019 Apr 16;8: [PMID: 30990168]
  38. Mol Cell Biol. 2009 Nov;29(21):5872-88 [PMID: 19703994]
  39. Cell. 2015 Jul 16;162(2):259-270 [PMID: 26144316]
  40. Nat Metab. 2020 Dec;2(12):1401-1412 [PMID: 33257855]
  41. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282 [PMID: 33495651]
  42. Cell. 2017 Apr 06;169(2):258-272.e17 [PMID: 28388410]
  43. Scand J Clin Lab Invest. 1983 Oct;43(6):503-12 [PMID: 6419345]
  44. Cancer Res. 1962 Jun;22:581-8 [PMID: 13874819]
  45. Cell. 2015 Sep 10;162(6):1217-28 [PMID: 26321681]
  46. Nucleic Acids Res. 2022 Jan 7;50(D1):D622-D631 [PMID: 34986597]
  47. Nat Cancer. 2021 Apr;2(4):414-428 [PMID: 34179825]
  48. Elife. 2017 Aug 15;6: [PMID: 28826492]
  49. Cell Metab. 2021 Jun 1;33(6):1248-1263.e9 [PMID: 33651980]
  50. Cell Chem Biol. 2022 Nov 17;29(11):1588-1600.e7 [PMID: 36306785]
  51. Langmuir. 2008 Aug 19;24(16):8402-4 [PMID: 18627191]
  52. Nat Cell Biol. 2018 Jul;20(7):782-788 [PMID: 29941931]
  53. Nature. 2017 Jul 27;547(7664):453-457 [PMID: 28678785]
  54. Nat Rev Cancer. 2019 Nov;19(11):651-661 [PMID: 31530936]
  55. Nat Metab. 2021 Nov;3(11):1500-1511 [PMID: 34799701]
  56. Trends Cell Biol. 2017 Nov;27(11):863-875 [PMID: 28734735]
  57. Cancer Res. 1964 Jun;24:780-94 [PMID: 14190544]
  58. Cell Chem Biol. 2020 Sep 17;27(9):1124-1129 [PMID: 32707038]
  59. Mol Cancer Ther. 2018 Sep;17(9):1824-1832 [PMID: 30181331]
  60. Elife. 2020 Jul 10;9: [PMID: 32648540]
  61. Science. 2016 Nov 25;354(6315):1008-1015 [PMID: 27885007]
  62. Pharmacol Ther. 2015 Jul;151:16-31 [PMID: 25709099]
  63. Cell Metab. 2022 Sep 6;34(9):1298-1311.e6 [PMID: 35981545]

Grants

  1. KL2 TR002542/NCATS NIH HHS
  2. U01 CA224348/NCI NIH HHS
  3. R01 CA259253/NCI NIH HHS
  4. 110302/Z/15/Z/Wellcome Trust
  5. P30 CA014051/NCI NIH HHS
  6. T32 GM007753/NIGMS NIH HHS
  7. R35 CA242379/NCI NIH HHS
  8. T32 GM144273/NIGMS NIH HHS
  9. 204845/Z/16/Z/Wellcome Trust
  10. R01 CA208205/NCI NIH HHS
  11. T32 CA071345/NCI NIH HHS
  12. MR/T032413/1/Medical Research Council
  13. P50 CA090381/NCI NIH HHS
  14. F30 HL156404/NHLBI NIH HHS
  15. P30 DK040561/NIDDK NIH HHS
  16. T32 GM007287/NIGMS NIH HHS
  17. /Howard Hughes Medical Institute
  18. /Department of Health
  19. R01 CA269672/NCI NIH HHS
  20. U01 CA261842/NCI NIH HHS
  21. F31 CA271787/NCI NIH HHS
  22. /Wellcome Trust

MeSH Term

Humans
Cell Culture Techniques
Cell Line
High-Throughput Screening Assays
Small Molecule Libraries

Chemicals

Small Molecule Libraries

Word Cloud

Created with Highcharts 10.0.0cellmediumscreeningefficacyculturemetabolismresponseserum-derivedcompoundsstandardnutrientlevelscandrugsensitivitynutrientscancersmallmoleculetargetingunderstandmediachallengenewanticancerdrugsmodelsalwayspredictivepatientsOnelimitationreliancenon-physiologicalinfluencegeneralassessmentphysiologicalaffecttherapieslackingaddressdevelopedsupportsproliferationdiverselinesamenablehigh-throughputscreenedseverallibrariesfoundmetabolicenzymesdifferentiallyeffectivecomparedexploiteddifferencesconditionsaffectedcellsillustratingapproachusedscreenpotentialtherapeuticsmodifiedavailableScreeningrevealsdifferentialCancerCultureDrugHigh-throughputNutrientenvironmentPhenotypicPhysiologic

Similar Articles

Cited By