Impact of critical eddy diffusivity on seasonal bloom dynamics of Phytoplankton in a global set of aquatic environments.

Arpita Mondal, Sandip Banerjee
Author Information
  1. Arpita Mondal: Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
  2. Sandip Banerjee: Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India. sandip.banerjee@ma.iitr.ac.in.

Abstract

The intensity of eddy diffusivity and the spatial average of water velocity at the depths of the water column in oceans and lakes play a fundamental role in phytoplankton production and phytoplankton and zooplankton biomass, and community composition. The critical depth and intensity of turbulent mixing within the water column profoundly affect phytoplankton biomass, which depends on the sinking characteristic of planktonic algal species. We propose an Nutrient-Phytoplankton-Zooplankton (NPZ) model in 3D space with light and nutrient-limited growth in a micro-scale ecological study. To incorporate micro-scale observation of phytoplankton intermittency in bloom mechanism in stationary as well as oceanic turbulent flows, a moment closure method has been applied in this study. Experimental observations imply that an increase in turbulence is sometimes ecologically advantageous for non-motile planktonic algae. How do we ensure whether there will be a bloom cycle or whether there can be any bloom at all when the existing phytoplankton group is buoyant, heavier, motile, or non-motile? To address these questions, we have explored the effects of critical depth, the intensity of eddy diffusivity, spatial average of water velocity, on the concentration as well as horizontal and vertical distribution of phytoplankton and zooplankton biomass using a mathematical model and moment closure technique. We quantify a critical threshold value of eddy diffusivity and the spatial average of water velocity and observe the corresponding changes in the phytoplankton bloom dynamics. Our results highlight the importance of eddy diffusivity and the spatial average of water velocity on seasonal bloom dynamics and also mimic different real-life bloom scenarios in Mikawa Bay (Japan), Tokyo Bay (Japan), Arakawa River (Japan), the Baltic Sea, the North Atlantic Ocean, Gulf Alaska, the North Arabian Sea, the Cantabrian Sea, Lake Nieuwe Meer (Netherlands) and several shallower lakes.

References

  1. Microbiol Rev. 1994 Mar;58(1):94-144 [PMID: 8177173]
  2. Nature. 2006 Dec 7;444(7120):695-6 [PMID: 17151650]
  3. New Phytol. 1997 Jul;136(3):407-417 [PMID: 33863010]
  4. Proc Biol Sci. 2016 Oct 12;283(1840): [PMID: 27708154]
  5. Sci Rep. 2020 Jan 24;10(1):1142 [PMID: 31980670]
  6. Science. 2004 Mar 12;303(5664):1622-4 [PMID: 15016987]
  7. PLoS One. 2011;6(6):e21567 [PMID: 21747911]
  8. Phys Rev E. 2021 Dec;104(6-2):065106 [PMID: 35030936]
  9. Sci Rep. 2022 Apr 8;12(1):5939 [PMID: 35396517]
  10. J R Soc Interface. 2015 Nov 6;12(112): [PMID: 26538558]
  11. Nature. 1999 Feb 4;397(6718):423-425 [PMID: 29667969]
  12. J Phycol. 1968 Dec;4(4):333-40 [PMID: 27068208]
  13. Bull Math Biol. 1999 Mar;61(2):303-39 [PMID: 17883212]
  14. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4209-14 [PMID: 18337491]

MeSH Term

Animals
Phytoplankton
Seasons
Biomass
Plankton
Zooplankton
Water
Lakes

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0phytoplanktonbloomwatereddydiffusivityspatialaveragevelocitycriticalintensitybiomassdynamicsJapanSeacolumnlakeszooplanktondepthturbulentplanktonicmodelmicro-scalestudywellmomentclosurewhetherseasonalBayNorthdepthsoceansplayfundamentalroleproductioncommunitycompositionmixingwithinprofoundlyaffectdependssinkingcharacteristicalgalspeciesproposeNutrient-Phytoplankton-ZooplanktonNPZ3Dspacelightnutrient-limitedgrowthecologicalincorporateobservationintermittencymechanismstationaryoceanicflowsmethodappliedExperimentalobservationsimplyincreaseturbulencesometimesecologicallyadvantageousnon-motilealgaeensurewillcyclecanexistinggroupbuoyantheaviermotilenon-motile?addressquestionsexploredeffectsconcentrationhorizontalverticaldistributionusingmathematicaltechniquequantifythresholdvalueobservecorrespondingchangesresultshighlightimportancealsomimicdifferentreal-lifescenariosMikawaTokyoArakawaRiverBalticAtlanticOceanGulfAlaskaArabianCantabrianLakeNieuweMeerNetherlandsseveralshallowerImpactPhytoplanktonglobalsetaquaticenvironments

Similar Articles

Cited By

No available data.