Re-identification and characterization of grass carp TLR20.

Maolin Lv, Jingjing Zhang, Weicheng Wang, Rui Jiang, Jianguo Su
Author Information
  1. Maolin Lv: Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  2. Jingjing Zhang: Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  3. Weicheng Wang: Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  4. Rui Jiang: Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  5. Jianguo Su: Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.

Abstract

Toll-like receptors (TLRs) play a crucial role in the recognition of microbial-associated molecular patterns in the innate immune system. Fish TLRs have undergone significant gene expansion to adapt to complex aquatic environments. Among them, TLR20 from the TLR11 family actively responds to viral and bacterial invasions. Previous studies have reported two TLR20s in grass carp (), and in this study, we revised this conclusion. Based on the latest grass carp genome, we identified a new TLR20 member. These three TLR20s are arranged in tandem on chromosome 9, indicating that they are generated by gene duplication events. They were renamed CiTLR20.1 to CiTLR20.3 based on their chromosomal positions. The CiTLR20s in exhibit higher similarities with those in , and , and lower similarities with those in other distantly related fish species. Selective pressure analysis revealed low conservation and negative evolution of TLR20s during evolution. The 3D structures of the three TLR20s showed significant differences, reflecting functional variations and different downstream adaptor molecule recruitment. Transcriptome data revealed tissue distribution differences of TLR20s, with TLR20.1 showing relatively low expression levels in all the tissues, while TLR20.2 and TLR20.3 showed higher expression in the head kidney, spleen, and gill. Additionally, TLR20.2 and TLR20.3 actively responded to GCRV-II infection, with higher upregulation of TLR20.2 in response to challenge. In conclusion, this study corrected the number of grass carp TLR20 members and analyzed TLR20 from an evolutionary and structural perspective, exploring its role in antiviral and antibacterial defense. This study provides reference for future research on fish TLR20.

Keywords

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  2. J Immunol. 2008 Sep 1;181(5):3474-85 [PMID: 18714020]
  3. Semin Cell Dev Biol. 2013 Apr;24(4):320-31 [PMID: 23466286]
  4. Cytokine. 2010 Mar;49(3):237-44 [PMID: 19264502]
  5. Dev Comp Immunol. 2009 Mar;33(3):353-61 [PMID: 18590761]
  6. Eur J Biochem. 2000 Dec;267(24):7031-7 [PMID: 11106413]
  7. Immunogenetics. 2013 Jul;65(7):511-30 [PMID: 23558557]
  8. Blood. 2009 Feb 12;113(7):1399-407 [PMID: 18757776]
  9. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W506-11 [PMID: 17586822]
  10. Science. 2003 Aug 1;301(5633):640-3 [PMID: 12855817]
  11. J Biol Chem. 2015 Feb 6;290(6):3209-22 [PMID: 25505250]
  12. BMC Genomics. 2022 Apr 7;23(1):271 [PMID: 35392810]
  13. J Biol Chem. 2003 Oct 17;278(42):41443-51 [PMID: 12888566]
  14. Front Immunol. 2020 Jan 17;10:3003 [PMID: 32010127]
  15. Nat Commun. 2017 Jan 18;8:14133 [PMID: 28098138]
  16. Fish Shellfish Immunol. 2015 Nov;47(1):271-9 [PMID: 26363234]
  17. Nat Commun. 2019 Oct 11;10(1):4625 [PMID: 31604932]
  18. Fish Shellfish Immunol. 2014 Dec;41(2):549-59 [PMID: 25450999]
  19. Dev Comp Immunol. 2016 Dec;65:91-97 [PMID: 27370974]
  20. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  21. Dev Comp Immunol. 2011 Sep;35(9):886-97 [PMID: 21241729]
  22. Cell. 2010 Mar 19;140(6):805-20 [PMID: 20303872]
  23. Biochem Biophys Res Commun. 2009 Oct 30;388(4):621-5 [PMID: 19686699]
  24. Nat Rev Immunol. 2007 May;7(5):353-64 [PMID: 17457343]
  25. BMC Genomics. 2013 Apr 15;14:255 [PMID: 23586901]
  26. Cell Microbiol. 2003 Mar;5(3):143-53 [PMID: 12614458]
  27. Sci Adv. 2019 Jun 26;5(6):eaav0547 [PMID: 31249862]
  28. Nature. 2000 Nov 2;408(6808):111-5 [PMID: 11081518]
  29. Trends Immunol. 2003 Oct;24(10):528-33 [PMID: 14552836]
  30. Immunogenetics. 2014 Feb;66(2):123-41 [PMID: 24327191]
  31. Nat Genet. 2015 Jun;47(6):625-31 [PMID: 25938946]
  32. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  33. Mol Immunol. 2004 Jan;40(11):773-83 [PMID: 14687934]
  34. Dev Comp Immunol. 2017 Nov;76:93-104 [PMID: 28559111]
  35. Nature. 2016 Apr 18;533(7602):200-5 [PMID: 27088604]
  36. Curr Opin Immunol. 2010 Feb;22(1):20-7 [PMID: 20060278]
  37. Dev Comp Immunol. 2017 Feb;67:471-475 [PMID: 27639315]
  38. Annu Rev Immunol. 2002;20:197-216 [PMID: 11861602]
  39. Mol Immunol. 2004 Jul;41(6-7):577-82 [PMID: 15219996]
  40. Mol Immunol. 2008 Mar;45(6):1531-47 [PMID: 18022233]
  41. J Immunol. 2020 Apr 15;204(8):2269-2276 [PMID: 32198144]
  42. Anim Genet. 2006 Dec;37(6):597-8 [PMID: 17121610]
  43. Mol Genet Genomics. 2014 Dec;289(6):1045-60 [PMID: 25092473]
  44. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  45. J Mol Evol. 2004 Aug;59(2):190-203 [PMID: 15486693]
  46. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  47. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  48. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  49. Dev Comp Immunol. 2011 Dec;35(12):1263-72 [PMID: 21414346]
  50. EMBO Rep. 2022 Aug 3;23(8):e54281 [PMID: 35678424]
  51. J Fish Dis. 2010 Jun 1;33(6):497-505 [PMID: 20384909]
  52. Cell Discov. 2022 Apr 5;8(1):31 [PMID: 35379790]
  53. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  54. Mol Biol Evol. 2006 Sep;23(9):1808-16 [PMID: 16809621]
  55. BMC Biol. 2016 Jan 04;14:1 [PMID: 26728391]
  56. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1638-43 [PMID: 14757817]
  57. J Immunol. 2013 Dec 15;191(12):6101-9 [PMID: 24198284]
  58. BMC Genomics. 2007 May 21;8:124 [PMID: 17517123]

Word Cloud

Created with Highcharts 10.0.0TLR20TLR20scarpgrassstudy3higherexpression2TLRsrolesignificantgeneactivelyconclusionthreeCiTLR201similaritiesfishrevealedlowevolutionshoweddifferencesRe-identificationToll-likereceptorsplaycrucialrecognitionmicrobial-associatedmolecularpatternsinnateimmunesystemFishundergoneexpansionadaptcomplexaquaticenvironmentsAmongTLR11familyrespondsviralbacterialinvasionsPreviousstudiesreportedtworevisedBasedlatestgenomeidentifiednewmemberarrangedtandemchromosome9indicatinggeneratedduplicationeventsrenamedbasedchromosomalpositionsCiTLR20sexhibitlowerdistantlyrelatedspeciesSelectivepressureanalysisconservationnegative3DstructuresreflectingfunctionalvariationsdifferentdownstreamadaptormoleculerecruitmentTranscriptomedatatissuedistributionshowingrelativelylevelstissuesheadkidneyspleengillAdditionallyrespondedGCRV-IIinfectionupregulationresponsechallengecorrectednumbermembersanalyzedevolutionarystructuralperspectiveexploringantiviralantibacterialdefenseprovidesreferencefutureresearchcharacterizationAdaptorGrassCtenopharyngodonidellaLocalizationmRNA

Similar Articles

Cited By