Molecular docking and simulation studies of Chloroquine, Rimantadine and CAP-1 as potential repurposed antivirals for decapod iridescent virus 1 (DIV1).

Wan-Atirah Azemin, Nur Farahin Ishak, Mohamad Amirul Asyraf Saedin, Mohd Shahir Shamsir, Siti Aisyah Razali
Author Information
  1. Wan-Atirah Azemin: School of Biological Sciences, Universiti Sains Malaysia, Pulau, Minden, Pinang 11800, Malaysia.
  2. Nur Farahin Ishak: Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Nerus, Kuala, Terengganu 21030, Malaysia.
  3. Mohamad Amirul Asyraf Saedin: Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Nerus, Kuala, Terengganu 21030, Malaysia.
  4. Mohd Shahir Shamsir: Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Malaysia.
  5. Siti Aisyah Razali: Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Nerus, Kuala, Terengganu 21030, Malaysia.

Abstract

Drug repurposing is a methodology of identifying new therapeutic use for existing drugs. It is a highly efficient, time and cost-saving strategy that offers an alternative approach to the traditional drug discovery process. Past in-silico studies involving molecular docking have been successful in identifying potential repurposed drugs for the various treatment of diseases including aquaculture diseases. The emerging shrimp hemocyte iridescent virus (SHIV) or Decapod iridescent virus 1 (DIV1) is a viral pathogen that causes severe disease and high mortality (80 %) in farmed shrimps caused serious economic losses and presents a new threat to the shrimp farming industry. Therefore, effective antiviral drugs are critically needed to control DIV1 infections. The aim of this study is to investigate the interaction of potential existing antiviral drugs, Chloroquine, Rimantadine, and CAP-1 with DIV1 major capsid protein (MCP) with the intention of exploring the potential of drug repurposing. The interaction of the DIV1 MCP and three antivirals were characterised and analysed using molecular docking and molecular dynamics simulation. The results showed that CAP-1 is a more promising candidate against DIV1 with the lowest binding energy of -8.46 kcal/mol and is more stable compared to others. We speculate that CAP-1 binding may induce the conformational changes in the DIV1 MCP structure by phosphorylating multiple residues (His123, Tyr162, and Thr395) and ultimately block the viral assembly and maturation of DIV1 MCP. To the best of our knowledge, this is the first report regarding the structural characterisation of DIV1 MCP docked with repurposing drugs.

Keywords

References

  1. Fish Shellfish Immunol. 2020 Mar;98:832-842 [PMID: 31759080]
  2. Comput Biol Chem. 2015 Dec;59 Pt A:87-94 [PMID: 26476127]
  3. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  4. Biosci Trends. 2020 Mar 16;14(1):72-73 [PMID: 32074550]
  5. Semin Cancer Biol. 2021 Jan;68:59-74 [PMID: 31562957]
  6. Arch Virol. 2011 Sep;156(9):1505-15 [PMID: 21603939]
  7. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W478-84 [PMID: 24861624]
  8. J Mol Graph Model. 2020 Jun;97:107548 [PMID: 32023508]
  9. Mar Drugs. 2020 Feb 27;18(3): [PMID: 32120969]
  10. Curr Opin Virol. 2014 Apr;5:63-71 [PMID: 24607800]
  11. J Chem Phys. 2020 Oct 7;153(13):134110 [PMID: 33032406]
  12. Cell. 2009 Jun 26;137(7):1282-92 [PMID: 19523676]
  13. Protein Sci. 1993 Sep;2(9):1511-9 [PMID: 8401235]
  14. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  15. J Mol Model. 2010 Aug;16(8):1357-67 [PMID: 20140471]
  16. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4 [PMID: 24753421]
  17. Viruses. 2022 Dec 09;14(12): [PMID: 36560756]
  18. Database (Oxford). 2021 Apr 7;2021: [PMID: 33826699]
  19. J Virol. 1979 Jul;31(1):261-3 [PMID: 501798]
  20. Viruses. 2018 Mar 30;10(4): [PMID: 29601483]
  21. Biophys Rep. 2018;4(1):1-16 [PMID: 29577065]
  22. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  23. Methods Mol Biol. 2019;1903:73-95 [PMID: 30547437]
  24. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  25. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2401-E2410 [PMID: 28265094]
  26. Retrovirology. 2021 Dec 22;18(1):41 [PMID: 34937567]
  27. PLoS Comput Biol. 2009 Jul;5(7):e1000423 [PMID: 19578428]
  28. Fish Shellfish Immunol. 2019 Mar;86:1177-1193 [PMID: 30599257]
  29. Protein Expr Purif. 2021 Aug;184:105876 [PMID: 33757761]
  30. Fish Shellfish Immunol. 2013 Apr;34(4):1002-10 [PMID: 22732509]
  31. Nucleic Acids Res. 2017 Jan 4;45(D1):D955-D963 [PMID: 27899599]
  32. Viruses. 2023 Jun 12;15(6): [PMID: 37376659]
  33. Nucleic Acids Res. 2016 Jul 8;44(W1):W406-9 [PMID: 27131371]
  34. Comput Struct Biotechnol J. 2020 Apr 13;18:1043-1055 [PMID: 32419905]
  35. J Virol. 2012 Jun;86(12):6643-55 [PMID: 22496222]
  36. Int J Mol Sci. 2020 Nov 20;21(22): [PMID: 33233837]
  37. J Invertebr Pathol. 2021 Nov;186:107369 [PMID: 32272137]
  38. Nat Protoc. 2015 May;10(5):733-55 [PMID: 25855957]
  39. Nat Med. 2017 Apr 7;23(4):405-408 [PMID: 28388612]
  40. Sci Rep. 2017 Sep 19;7(1):11834 [PMID: 28928367]
  41. Viruses. 2019 Apr 17;11(4): [PMID: 30999644]
  42. Ann Rheum Dis. 2020 May;79(5):666-667 [PMID: 32241791]
  43. PLoS Comput Biol. 2013;9(2):e1002905 [PMID: 23408879]
  44. Sci Rep. 2017 Sep 12;7(1):11401 [PMID: 28900272]
  45. Proc Natl Acad Sci U S A. 2022 Feb 1;119(5): [PMID: 35078938]
  46. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  47. Bioinformatics. 2012 Jan 15;28(2):286-7 [PMID: 22113084]
  48. Bioinformatics. 2012 Jun 15;28(12):1650-1 [PMID: 22539666]
  49. J Am Chem Soc. 2018 Mar 7;140(9):3194-3197 [PMID: 29480712]
  50. J Mol Biol. 2007 Oct 19;373(2):355-66 [PMID: 17826792]
  51. Int J Immunopathol Pharmacol. 2021 Jan-Dec;35:20587384211002621 [PMID: 33726557]
  52. Dis Aquat Organ. 2016 Jun 15;120(1):17-26 [PMID: 27304867]
  53. Nucleic Acids Res. 2005 Apr 22;33(7):2302-9 [PMID: 15849316]
  54. Protein Sci. 2018 Jan;27(1):129-134 [PMID: 28875543]

Word Cloud

Created with Highcharts 10.0.0DIV1drugsiridescentvirusCAP-1MCPrepurposingpotentialdrugmoleculardocking1ChloroquineRimantadineDrugidentifyingnewexistingstudiesrepurposeddiseasesshrimphemocyteDecapodviralantiviralinteractionantiviralssimulationbindingmethodologytherapeuticusehighlyefficienttimecost-savingstrategyoffersalternativeapproachtraditionaldiscoveryprocessPastin-silicoinvolvingsuccessfulvarioustreatmentincludingaquacultureemergingSHIVpathogencausesseverediseasehighmortality80 %farmedshrimpscausedseriouseconomiclossespresentsthreatfarmingindustryThereforeeffectivecriticallyneededcontrolinfectionsaimstudyinvestigatemajorcapsidproteinintentionexploringthreecharacterisedanalysedusingdynamicsresultsshowedpromisingcandidatelowestenergy-846 kcal/molstablecomparedothersspeculatemayinduceconformationalchangesstructurephosphorylatingmultipleresiduesHis123Tyr162Thr395ultimatelyblockassemblymaturationbestknowledgefirstreportregardingstructuralcharacterisationdockedMoleculardecapodAntiviralAquacultureShrimp

Similar Articles

Cited By