Cognitive Intra-individual Variability in the Laboratory Is Associated With Greater Executive Dysfunction in the Daily Lives of Older Adults With HIV.

Natalie C Ridgely, Steven Paul Woods, Troy A Webber, Andrea I Mustafa, Darrian Evans
Author Information
  1. Natalie C Ridgely: Department of Psychology, University of Houston, Houston, Texas.
  2. Steven Paul Woods: Department of Psychology, University of Houston, Houston, Texas.
  3. Troy A Webber: Michael E. DeBakey VA Medical Center, Houston, Texas.
  4. Andrea I Mustafa: Department of Psychology, University of Houston, Houston, Texas.
  5. Darrian Evans: University of Louisville, Louisville, Kentucky.

Abstract

BACKGROUND: Executive dysfunction, which is common among persons with HIV (PWH), can have an adverse impact on health behaviors and quality of life. Intra-individual variability (IIV) is a measure of within-person variability across cognitive tests that is higher in PWH and is thought to reflect cognitive dyscontrol.
OBJECTIVE: To assess whether cognitive IIV in the laboratory is associated with self-reported Executive dysfunction in daily life among older PWH.
METHOD: Participants included 71 PWH aged ���50 years who completed six subtests from the Cogstate battery and two subscales from the Frontal Systems Behavior Scale (FrSBe; self-report version). Cognitive IIV was calculated from the Cogstate as the coefficient of variation derived from age-adjusted normative T scores.
RESULTS: Cognitive IIV as measured by the Cogstate showed a significant, positive, medium-sized association with current FrSBe ratings of Executive dysfunction but not disinhibition.
CONCLUSION: Higher cognitive IIV in the laboratory as measured by the Cogstate may be related to the expression of HIV-associated symptoms of Executive dysfunction in daily life for older PWH.

References

  1. Abdi H Salkind JN. 2010. Coefficient of variation. Encyclopedia of Research Design. Thousand Oaks, California: SAGE; 169���171. doi:10.4135/9781412961288.n56
  2. American Psychiatric Association. 1994. Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington, DC: American Psychiatric Association.
  3. Anderson AE, Jones JD, Thaler NS, et al. 2018. Intraindividual variability in neuropsychological performance predicts cognitive decline and death in HIV. Neuropsychology. 32:966���972. doi:10.1037/neu0000482 [DOI: 10.1037/neu0000482]
  4. Antinori A, Arendt G, Becker JT, et al. 2007. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69:1789���1799. doi:10.1212/01.WNL.0000287431.88658.8b [DOI: 10.1212/01.WNL.0000287431.88658.8b]
  5. Arce Renter��a M, Byrd D, Coulehan K, et al. 2020. Neurocognitive intra-individual variability within HIV+ adults with and without current substance use. Neuropsychology. 34:321���330. doi:10.1037/neu0000612 [DOI: 10.1037/neu0000612]
  6. Carey CL, Woods SP, Gonzalez R, et al. 2004. Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol. 26:307���319. doi:10.1080/13803390490510031 [DOI: 10.1080/13803390490510031]
  7. Casaletto KB, Weber E, Iudicello JE, et al. Chiaravalloti ND, Goverover Y. 2017. Real-world impact of HIV-associated neurocognitive impairment. Changes in the Brain. New York, New York: Springer-Verlag; 211���245. doi:10.1007/978-0-387-98188-8_10
  8. Cattie JE, Doyle K, Weber E, et al. 2012. Planning deficits in HIV-associated neurocognitive disorders: component processes, cognitive correlates, and implications for everyday functioning. J Clin Exp Neuropsychol. 34:906���918. doi:10.1080/13803395.2012.692772 [DOI: 10.1080/13803395.2012.692772]
  9. Chaytor N, Schmitter-Edgecombe M. 2003. The ecological validity of neuropsychological tests: a review of the literature on everyday cognitive skills. Neuropsychol Rev. 13:181���197. doi:10.1023/b:nerv.0000009483.91468.fb [DOI: 10.1023/b]
  10. Chaytor N, Schmitter-Edgecombe M, Burr R. 2006. Improving the ecological validity of executive functioning assessment. Arch Clin Neuropsychol. 21:217���227. doi:10.1016/j.acn.2005.12.002 [DOI: 10.1016/j.acn.2005.12.002]
  11. Cho H, Pilloni G, Tahsin R, et al. 2023. Moving intra-individual variability (IIV) towards clinical utility: IIV measured using a commercial testing platform. J Neurol Sci. 446:120586. doi:10.1016/j.jns.2023.120586 [DOI: 10.1016/j.jns.2023.120586]
  12. Christensen H, Dear KB, Anstey KJ, et al. 2005. Within-occasion intraindividual variability and preclinical diagnostic status: Is intraindividual variability an indicator of mild cognitive impairment? Neuropsychology. 19:309���317. doi:10.1037/0894-4105.19.3.309 [DOI: 10.1037/0894-4105.19.3.309]
  13. Cirino PT, Ahmed Y, Miciak J, et al. 2018. A framework for executive function in the late elementary years. Neuropsychology. 32:176���189. doi:10.1037/neu0000427 [DOI: 10.1037/neu0000427]
  14. Du Plessis S, Vink M, Joska JA, et al. 2014. HIV infection and the fronto���striatal system: a systematic review and meta-analysis of fMRI studies. AIDS. 28:803���811. doi:10.1097/QAD.0000000000000151 [DOI: 10.1097/QAD.0000000000000151]
  15. Ettenhofer ML, Foley J, Castellon SA, et al. 2010. Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. Neurology. 74:1217���1222. doi:10.1212/WNL.0b013e3181d8c1ca [DOI: 10.1212/WNL.0b013e3181d8c1ca]
  16. Ferman TJ, Smith GE, Boeve BF, et al. 2004. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurology. 62:181���187. doi:10.1212/WNL.62.2.181 [DOI: 10.1212/WNL.62.2.181]
  17. Field-Fote EE. 2019. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the ���active ingredients��� in neurorehabilitation. J Neurol Phys Ther. 43:83���84. doi:10.1097/npt.0000000000000275 [DOI: 10.1097/npt.0000000000000275]
  18. Funder DC, Ozer DJ. 2019. Evaluating effect size in psychological research: sense and nonsense. AMPPS. 2:156���168. doi:10.1177/2515245919847202 [DOI: 10.1177/2515245919847202]
  19. Grace J, Malloy PF. 2001. FrSBe Frontal Systems Behavior Scale: Professional Manual. Lutz, Florida: Psychological Assessment Resources.
  20. Heaton RK, Clifford DB, Franklin DR Jr, et al. 2010. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 75:2087���2096. doi:10.1212/WNL.0b013e318200d727 [DOI: 10.1212/WNL.0b013e318200d727]
  21. Heaton RK, Franklin DR, Ellis RJ, et al. 2011. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 17:3���16. doi:10.1007/s13365-010-0006-1 [DOI: 10.1007/s13365-010-0006-1]
  22. Heaton RK, Marcotte TD, Mindt MR, et al. 2004. The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc. 10:317���331. doi:10.1017/S1355617704102130 [DOI: 10.1017/S1355617704102130]
  23. Hines LJ, Miller EN, Hinkin CH, et al. 2016. Cortical brain atrophy and intra-individual variability in neuropsychological test performance in HIV disease. Brain Imaging Behav. 10:640���651. doi:10.1007/s11682-015-9441-1 [DOI: 10.1007/s11682-015-9441-1]
  24. Hinkin CH, Castellon SA, Durvasula RS, et al. 2002. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 59:1944���1950. doi:10.1212/01.WNL.0000038347.48137.67 [DOI: 10.1212/01.WNL.0000038347.48137.67]
  25. Hultsch DF, MacDonald SW, Dixon RA. 2002. Variability in reaction time performance of younger and older adults. J Gerontol B Psychol Sci Soc Sci. 57:P101���P115. doi:10.1093/geronb/57.2.p101 [DOI: 10.1093/geronb/57.2.p101]
  26. Iudicello JE, Woods SP, Cattie JE, et al. 2013. Risky decision-making in HIV-associated neurocognitive disorders (HAND). Clin Neuropsychol. 27:256���275. doi:10.1080/13854046.2012.740077 [DOI: 10.1080/13854046.2012.740077]
  27. Jessen F, Amariglio RE, van Boxtel M, et al. 2014. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer���s disease. Alzheimers Dement. 10:844���852. doi:10.1016/j.jalz.2014.01.001 [DOI: 10.1016/j.jalz.2014.01.001]
  28. Jiang X, Barasky R, Olsen H, et al. 2016. Behavioral and neuroimaging evidence for impaired executive function in ���cognitively normal��� older HIV-infected adults. AIDS Care. 28:436���440. doi:10.1080/09540121.2015.1112347 [DOI: 10.1080/09540121.2015.1112347]
  29. Jones JD, Kuhn T, Mahmood Z, et al. 2018. Longitudinal intra-individual variability in neuropsychological performance relates to white matter changes in HIV. Neuropsychology. 32:206���212. doi:10.1037/neu0000390 [DOI: 10.1037/neu0000390]
  30. Kamat R, Brown GG, Bolden K, et al. 2014. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection. J Clin Exp Neuropsychol. 36:854���866. doi:10.1080/13803395.2014.950636 [DOI: 10.1080/13803395.2014.950636]
  31. Kamat R, Cattie JE, Marcotte TD, et al. 2015. Incident major depressive episodes increase the severity and risk of apathy in HIV infection. J Affect Disord. 175:475���480. doi:10.1016/j.jad.2015.01.010 [DOI: 10.1016/j.jad.2015.01.010]
  32. Kamat R, Doyle KL, Iudicello JE, et al. 2016. Neurobehavioral disturbances during acute and early HIV infection. Cogn Behav Neurol. 29:1���10. doi:10.1097/WNN.0000000000000084 [DOI: 10.1097/WNN.0000000000000084]
  33. Marcotte TD, Wolfson T, Rosenthal TJ, et al. 2004. A multimodal assessment of driving performance in HIV infection. Neurology. 63:1417���1422. doi:10.1212/01.WNL.0000141920.33580.5D [DOI: 10.1212/01.WNL.0000141920.33580.5D]
  34. Martin EM, Robertson LC, Edelstein HE, et al. 1992. Performance of patients with early HIV-1 infection on the Stroop task. J Clin Exp Neuropsychol. 14:857���868. doi:10.1080/01688639208402867 [DOI: 10.1080/01688639208402867]
  35. Martin E, Keutmann MK, Fogel JS, et al. 2018. Verbal and spatial working memory among drug-using HIV-infected men and women. J Neurovirol. 24:488���497. doi:10.1007/s13365-018-0639-z [DOI: 10.1007/s13365-018-0639-z]
  36. Matchanova A, Woods SP, Kordovski VM. 2020. Operationalizing and evaluating the Frascati criteria for functional decline in diagnosing HIV-associated neurocognitive disorders in adults. J Neurovirol. 26:155���167. doi:10.1007/s13365-019-00809-z [DOI: 10.1007/s13365-019-00809-z]
  37. Mcalister C, Schmitter-Edgecombe M, Lamb R. 2016. Examination of variables that may affect the relationship between cognition and functional status in individuals with mild cognitive impairment: a meta-analysis. Arch Clin Neuropsychol. 31:123���147. doi:10.1093/arclin/acv089 [DOI: 10.1093/arclin/acv089]
  38. McNair DM, Droppleman LF, Lorr M. 1971. Profile of Mood States (POMS). San Diego, California: Educational and Industrial Testing Service.
  39. Mitra P, Jain A, Kim K. 2022. HIV and AIDS in older adults: neuropsychiatric changes. Curr Psychiatry Rep. 24:463���468. doi:10.1007/s11920-022-01354-z [DOI: 10.1007/s11920-022-01354-z]
  40. Morgan EE, Iudicello JE, Weber E, et al. 2012. Synergistic effects of HIV infection and older age on daily functioning. J Acquir Immune Defic Syndr. 61:341���348. doi:10.1097/QAI.0b013e31826bfc53 [DOI: 10.1097/QAI.0b013e31826bfc53]
  41. Morgan EE, Woods SP, Delano-Wood L, et al. 2011. Intraindividual variability in HIV infection: evidence for greater neurocognitive dispersion in older HIV seropositive adults. Neuropsychology. 25:645���654. doi:10.1037/a0023792 [DOI: 10.1037/a0023792]
  42. Morgan EE, Woods SP, Grant I, et al. 2012. Intra-individual neurocognitive variability confers risk of dependence in activities of daily living among HIV-seropositive individuals without HIV-associated neurocognitive disorders. Arch Clin Neuropsychol. 27:293���303. doi:10.1093/arclin/acs003 [DOI: 10.1093/arclin/acs003]
  43. Musso M, Westervelt HJ, Long JD, et al. 2015. Intra-individual variability in prodromal Huntington disease and its relationship to genetic burden. J Int Neuropsychol Soc. 21:8���21. doi:10.1017/S1355617714001076 [DOI: 10.1017/S1355617714001076]
  44. Mustafa AI, Woods SP, Loft S, et al. 2023. Lower prospective memory is associated with higher neurocognitive dispersion in two samples of people with HIV: a conceptual replication study. J Int Neruopsychol Soc. 29:677���685. doi:10.1017/S1355617722000698 [DOI: 10.1017/S1355617722000698]
  45. Norman MA, Moore DJ, Taylor M, et al. 2011. Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test���Revised, Brief Visuospatial Memory Test���Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. J Clin Exp Neuropsychol. 33:793���804. doi:10.1080/13803395.2011.559157 [DOI: 10.1080/13803395.2011.559157]
  46. Rabin LA, Paolillo E, Barr WB. 2016. Stability in test-usage practices of clinical neuropsychologists in the United States and Canada over a 10-year period: a follow-up survey of INS and NAN members. Arch Clin Neuropsychol. 31:206���230. doi:10.1093/arclin/acw007 [DOI: 10.1093/arclin/acw007]
  47. Rourke SB, Halman MH, Bassel C. 1999. Neurocognitive complaints in HIV-infection and their relationship to depressive symptoms and neuropsychological functioning. J Clin Exp Neuropsychol. 21:737���756. doi:10.1076/jcen.21.6.737.863 [DOI: 10.1076/jcen.21.6.737.863]
  48. Rutter LA, Vahia IV, Forester BP, et al. 2020. Heterogeneous indicators of cognitive performance and performance variability across the lifespan. Front Aging Neurosci. 12:62. doi:10.3389/fnagi.2020.00062 [DOI: 10.3389/fnagi.2020.00062]
  49. Sheppard DP, Woods SP, Hasbun R, et al. 2018. Does intra-individual neurocognitive variability relate to neuroinvasive disease and quality of life in West Nile Virus. J Neurovirol. 24:506���513. doi:10.1007/s13365-018-0641-5 [DOI: 10.1007/s13365-018-0641-5]
  50. Sheppard DP, Woods SP, Massman PJ, et al. 2019. Frequency and correlates of subjective cognitive impairment in HIV disease. AIDS Behav. 23:617���626. doi:10.1007/s10461-018-2297-9 [DOI: 10.1007/s10461-018-2297-9]
  51. Stout JC, Ready RE, Grace J, et al. 2003. Factor analysis of the Frontal Systems Behavior Scale (FrSBe. Assessment. 10:79���85. doi:10.1177/1073191102250339 [DOI: 10.1177/1073191102250339]
  52. Stuss DT, Murphy KJ, Binns MA, et al. 2003. Staying on the job: the frontal lobes control individual performance variability. Brain. 126:2363���2380. doi:10.1093/brain/awg237 [DOI: 10.1093/brain/awg237]
  53. Tate D, Paul RH, Flanigan TP, et al. 2003. The impact of apathy and depression on quality of life in patients infected with HIV. AIDS Patient Care STDs. 17:115���120. doi:10.1089/108729103763807936 [DOI: 10.1089/108729103763807936]
  54. Thaler NS, Sayegh P, Arentoft A, et al. 2015. Increased neurocognitive intra-individual variability is associated with declines in medication adherence in HIV-infected adults. Neuropsychology. 29:919���925. doi:10.1037/neu0000191 [DOI: 10.1037/neu0000191]
  55. Thompson JL, Sheppard DP, Matchanova A, et al. 2023. Subjective cognitive decline disrupts aspects of prospective memory in older adults with HIV disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 30:582���600. doi:10.1080/13825585.2022.2065241 [DOI: 10.1080/13825585.2022.2065241]
  56. Vance DE, Del Bene VA, Frank JS, et al. 2022. Cognitive intra-individual variability in HIV: an integrative review. Neuropsychol Rev. 32:855���876. doi:10.1007/s11065-021-09528-x [DOI: 10.1007/s11065-021-09528-x]
  57. Walker KA, Brown GG. 2018. HIV-associated executive dysfunction in the era of modern antiretroviral therapy: a systematic review and meta-analysis. J Clin Exp Neuropsychol. 40:357���376. doi:10.1080/13803395.2017.1349879 [DOI: 10.1080/13803395.2017.1349879]
  58. Webber TA, Kiselica AM, Mikula C, et al. 2022. Dispersion-based cognitive intra-individual variability in dementia with Lewy bodies. Neuropsychology. 36:719���729. doi:10.1037/neu0000856 [DOI: 10.1037/neu0000856]
  59. Webber TA, Lorkiewicz SA, Kiselica AM, et al. 2023. Ecological validity of cognitive fluctuations in dementia with Lewy bodies. J Int Neuropsychol Soc. Published online April 14, 2023. doi:10.1017/S1355617723000255 [DOI: 10.1017/S1355617723000255]
  60. Weinborn M, Moyle J, Bucks RS, et al. 2013. Time-based prospective memory predicts engagement in risk behaviors among substance users: results from clinical and nonclinical samples. J Int Neuropsychol Soc. 19:284���294. doi:10.1017/S1355617712001361 [DOI: 10.1017/S1355617712001361]
  61. Woods SP. 2021. Introduction to the special issue on the neuropsychology of daily life. Neuropsychology. 35:1���2. doi:10.1037/neu0000716 [DOI: 10.1037/neu0000716]
  62. Woods SP, Iudicello JE, Morgan EE, et al. 2017. Household everyday functioning in the internet age: online shopping and banking skills are affected in HIV-associated neurocognitive disorders. J Int Neuropsychol Soc. 23:605���615. doi:10.1017/S1355617717000431 [DOI: 10.1017/S1355617717000431]
  63. Woods SP, Morgan EE, Loft S, et al. 2020. Supporting strategic processes can improve time-based prospective memory in the laboratory among older adults with HIV disease. Neuropsychology. 34:249���263. doi:10.1037/neu0000602 [DOI: 10.1037/neu0000602]
  64. Woods SP, Morgan EE, Loft S, et al. 2021. Enhancing cue salience improves aspects of naturalistic time-based prospective memory in older adults with HIV disease. Neuropsychology. 35:111���122. doi:10.1037/neu0000644 [DOI: 10.1037/neu0000644]
  65. Woods SP, Mustafa A, Beltran-Najera I, et al. 2023. Historical trends in reporting effect sizes in clinical neuropsychology journals: a call to venture beyond the results section. J Int Neuropsychol Soc. 29:885���892. doi:10.1017/S1355617723000127 [DOI: 10.1017/S1355617723000127]
  66. Woods SP, Rippeth JD, Frol AB, et al. 2004. Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol. 26:759���778. doi:10.1080/13803390490509565 [DOI: 10.1080/13803390490509565]
  67. Woods SP, Weinborn M, Li YR, et al. 2015. Does prospective memory influence quality of life in community-dwelling older adults? Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 22:679���692. doi:10.1080/13825585.2015.1027651 [DOI: 10.1080/13825585.2015.1027651]
  68. World Health Organization. 1998. Composite International Diagnostic Interview (CIDI, version 21). Geneva, Switzerland: World Health Organization.

Grants

  1. P30 MH062512/NIMH NIH HHS
  2. R01 MH073419/NIMH NIH HHS

MeSH Term

Humans
Aged
Quality of Life
Cognitive Dysfunction
Neuropsychological Tests
Cognition
HIV Infections

Word Cloud

Created with Highcharts 10.0.0PWHIIVdysfunctioncognitiveCogstatelifeexecutiveCognitiveExecutiveamongHIVIntra-individualvariabilitylaboratorydailyolderFrSBemeasuredBACKGROUND:commonpersonscanadverseimpacthealthbehaviorsqualitymeasurewithin-personacrosstestshigherthoughtreflectdyscontrolOBJECTIVE:assesswhetherassociatedself-reportedMETHOD:Participantsincluded71aged���50yearscompletedsixsubtestsbatterytwosubscalesFrontalSystemsBehaviorScaleself-reportversioncalculatedcoefficientvariationderivedage-adjustednormativeTscoresRESULTS:showedsignificantpositivemedium-sizedassociationcurrentratingsdisinhibitionCONCLUSION:HighermayrelatedexpressionHIV-associatedsymptomsVariabilityLaboratoryAssociatedGreaterDysfunctionDailyLivesOlderAdults

Similar Articles

Cited By (3)