A new Caenorhabditis elegans model to study copper toxicity in Wilson disease.

Federico Catalano, Thomas J O'Brien, Aleksandra A Mekhova, Lucia Vittoria Sepe, Mariantonietta Elia, Rossella De Cegli, Ivan Gallotta, Pamela Santonicola, Giuseppina Zampi, Ekaterina Y Ilyechova, Aleksei A Romanov, Polina D Samuseva, Josephine Salzano, Raffaella Petruzzelli, Elena V Polishchuk, Alessia Indrieri, Byung-Eun Kim, André E X Brown, Ludmila V Puchkova, Elia Di Schiavi, Roman S Polishchuk
Author Information
  1. Federico Catalano: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  2. Thomas J O'Brien: Behavioural Phenomics Research Group, MRC London Institute of Medical Sciences, London, UK. ORCID
  3. Aleksandra A Mekhova: Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, St. Petersburg, Russia.
  4. Lucia Vittoria Sepe: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  5. Mariantonietta Elia: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy. ORCID
  6. Rossella De Cegli: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  7. Ivan Gallotta: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  8. Pamela Santonicola: Institute of Biosciences and BioResources, National Research Council (CNR), Napoli, Italy.
  9. Giuseppina Zampi: Institute of Biosciences and BioResources, National Research Council (CNR), Napoli, Italy.
  10. Ekaterina Y Ilyechova: Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, St. Petersburg, Russia.
  11. Aleksei A Romanov: Department of Applied Mathematics, Institute of Applied Mathematics and Mechanics, Peter the Great Polytechnic University, St. Petersburg, Russia.
  12. Polina D Samuseva: Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, St. Petersburg, Russia.
  13. Josephine Salzano: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  14. Raffaella Petruzzelli: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy. ORCID
  15. Elena V Polishchuk: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  16. Alessia Indrieri: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  17. Byung-Eun Kim: Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA.
  18. André E X Brown: Behavioural Phenomics Research Group, MRC London Institute of Medical Sciences, London, UK.
  19. Ludmila V Puchkova: Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, St. Petersburg, Russia.
  20. Elia Di Schiavi: Institute of Biosciences and BioResources, National Research Council (CNR), Napoli, Italy.
  21. Roman S Polishchuk: Cell Biology and Disease Mechanisms Program, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.

Abstract

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.

Keywords

References

  1. J Biol Chem. 2018 Jul 13;293(28):10911-10925 [PMID: 29784876]
  2. Nutrients. 2019 Jun 17;11(6): [PMID: 31213024]
  3. J Neurobiol. 2003 Aug;56(2):178-97 [PMID: 12838583]
  4. J Clin Invest. 2016 Jul 1;126(7):2721-35 [PMID: 27322060]
  5. Ann Hum Biol. 2016;43(1):1-8 [PMID: 26207595]
  6. J Biol Chem. 2002 Nov 29;277(48):46736-42 [PMID: 12228238]
  7. J Biol Chem. 2012 Jan 20;287(4):2485-99 [PMID: 22130675]
  8. J Neurochem. 2018 Aug;146(4):356-373 [PMID: 29473169]
  9. Gastroenterology. 2019 Mar;156(4):1173-1189.e5 [PMID: 30452922]
  10. Hum Mol Genet. 2022 Mar 21;31(6):929-941 [PMID: 34622282]
  11. Hepatology. 2016 Jun;63(6):1828-41 [PMID: 26679751]
  12. Physiol Rev. 2007 Jul;87(3):1011-46 [PMID: 17615395]
  13. Metallomics. 2016 Sep 1;8(9):920-930 [PMID: 27714068]
  14. Pharmacol Res Perspect. 2021 Apr;9(2):e00721 [PMID: 33641258]
  15. J Hepatol. 2019 Aug;71(2):344-356 [PMID: 30965071]
  16. Methods Enzymol. 2002;353:497-505 [PMID: 12078522]
  17. Hepatology. 2016 Jun;63(6):1842-59 [PMID: 26660341]
  18. Mov Disord. 2006 Feb;21(2):245-8 [PMID: 16211609]
  19. Epigenetics. 2016 Nov;11(11):804-818 [PMID: 27611852]
  20. Front Cell Dev Biol. 2022 Apr 01;10:856300 [PMID: 35433682]
  21. G3 (Bethesda). 2012 Nov;2(11):1415-25 [PMID: 23173093]
  22. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32453-32463 [PMID: 33288711]
  23. Nat Genet. 1993 Dec;5(4):344-50 [PMID: 8298641]
  24. Dis Model Mech. 2019 Nov 11;12(11): [PMID: 31636082]
  25. Sci Rep. 2018 Apr 19;8(1):6247 [PMID: 29674751]
  26. Curr Genomics. 2013 Mar;14(1):2-10 [PMID: 23997646]
  27. Hepatology. 2009 Dec;50(6):1783-95 [PMID: 19937698]
  28. Dev Cell. 2014 Jun 23;29(6):686-700 [PMID: 24909901]
  29. Mol Aspects Med. 2023 Jun;91:101153 [PMID: 36411139]
  30. J Biol Chem. 2017 Mar 10;292(10):4113-4122 [PMID: 28119449]
  31. Nat Genet. 1993 Dec;5(4):327-37 [PMID: 8298639]
  32. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165842 [PMID: 32446740]
  33. Metallomics. 2017 Oct 18;9(10):1376-1388 [PMID: 28675215]
  34. Metallomics. 2021 Apr 30;13(5): [PMID: 33770183]
  35. Nat Rev Dis Primers. 2018 Sep 6;4(1):21 [PMID: 30190489]
  36. Curr Genomics. 2012 Apr;13(2):124-33 [PMID: 23024604]
  37. J Cell Sci. 2013 Sep 15;126(Pt 18):4160-72 [PMID: 23843626]
  38. J Biol Chem. 1998 Jan 16;273(3):1815-20 [PMID: 9430732]
  39. Commun Biol. 2022 Mar 23;5(1):253 [PMID: 35322206]
  40. J Biol Chem. 2017 Jan 6;292(1):1-14 [PMID: 27881675]

Grants

  1. MC-A658-5TY30/Medical Research Council
  2. P40 OD010440/ODCDC CDC HHS
  3. P40 OD010440/NIH HHS
  4. MC_UP_1102/6/Medical Research Council
  5. R01 DK129599/NIDDK NIH HHS
  6. R01 DK129599/NIH HHS

MeSH Term

Animals
Humans
Hepatolenticular Degeneration
Copper
Caenorhabditis elegans
Copper-Transporting ATPases
Hepatocytes

Chemicals

Copper
Copper-Transporting ATPases

Word Cloud

Created with Highcharts 10.0.0CumutantATP7Bcua-1WDmodeltoxicityWilsondiseasecopperCaenorhabditiselegansstrainanimalsfunctionabnormalitiesdevelopmentnewanimalmoleculargeneratedsubstitutionCUA-1endoplasmicreticulumATP7B-H1069QcausedmutationsgeneencodestransportingATPasewhosetraffickingGolgiendo-lysosomalcompartmentsdrivessequestrationexcessexcretionhepatocytesbileLossleadstoxicoverloadliversubsequentlybraincausingfatalhepaticneurologicallimitationsexistingtherapiescalltherapeuticapproachesrequireamenablesystemscreeningvalidationdrugstargetsachieveobjectiveconservedhistidineH828QorthologcorrespondingcommonvariantH1069Qcausesexhibitedpoorresistancecomparedwild-typemanifestedstrongdelaylarvalshorterlifespanimpairedmotilityoxidativestresspathwayactivationmitochondrialdamageadditionmorphologicalanalysisrevealedseveralneuronalexposedinvestigationsuggestedretaineddegradedsimilarlyhumanconsequenceproteinallowcounteractNotablypharmacologicalcorrectorsreducedmutantsindicatingsimilarpathogenicpathwaysmightactivatedH/QthereforetargetedrescueATP7B/CUA-1Takentogetherfindingssuggestnewlyrepresentsexcellentstudiesstudyhomeostasislysosomes

Similar Articles

Cited By