Genomes of a Novel Group of Phages That Use Alternative Genetic Code Found in Human Gut Viromes.

Igor Babkin, Artem Tikunov, Vera Morozova, Andrey Matveev, Vitaliy V Morozov, Nina Tikunova
Author Information
  1. Igor Babkin: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
  2. Artem Tikunov: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia. ORCID
  3. Vera Morozova: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
  4. Andrey Matveev: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia. ORCID
  5. Vitaliy V Morozov: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
  6. Nina Tikunova: Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.

Abstract

Metagenomics provides detection of phage genome sequences in various microbial communities. However, the use of alternative genetic codes by some phages precludes the correct analysis of their genomes. In this study, the unusual phage genome (phAss-1, 135,976 bp) was found after the de novo assembly of the human gut virome. Genome analysis revealed the presence of the TAG stop codons in 41 ORFs, including characteristic phage ORFs, and three genes of suppressor tRNA. Comparative analysis indicated that no phages with similar genomes were described. However, two phage genomes (BK046881_ctckW2 and BK025033_ct6IQ4) with substantial similarity to phAss-1 were extracted from the human gut metagenome data. These two complete genomes demonstrated 82.7% and 86.4% of nucleotide identity, respectively, similar genome synteny to phAss-1, the presence of suppressor tRNA genes and suppressor TAG stop codons in many characteristic phage ORFs. These data indicated that phAss-1, BK046881_ctckW2, and BK025033_ct6IQ4 are distinct species within the proposed genus. Moreover, a monophyletic group of divergent phage genomes containing the proposed genus was found among metagenome data. Several phage genomes from the group also contain ORFs with suppressor TAG stop codons, indicating the need to use various translation tables when depositing phage genomes in GenBank.

Keywords

References

  1. Nat Commun. 2021 Feb 16;12(1):1044 [PMID: 33594055]
  2. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  3. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  4. Arch Virol. 2016 Sep;161(9):2457-72 [PMID: 27350061]
  5. iScience. 2021 Jul 16;24(8):102875 [PMID: 34386733]
  6. Nat Commun. 2014 Jul 24;5:4498 [PMID: 25058116]
  7. Sci Rep. 2017 Aug 15;7(1):8292 [PMID: 28811656]
  8. J Bacteriol. 2005 Dec;187(24):8499-503 [PMID: 16321955]
  9. Microbiol Mol Biol Rev. 2020 Mar 4;84(2): [PMID: 32132243]
  10. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  11. BMC Genomics. 2013 Jun 19;14:410 [PMID: 23777341]
  12. J Mol Biol. 2000 Sep 8;302(1):205-17 [PMID: 10964570]
  13. Nat Microbiol. 2022 Jun;7(6):918-927 [PMID: 35618772]
  14. Nat Commun. 2019 Aug 20;10(1):3746 [PMID: 31431626]
  15. Viruses. 2021 Mar 18;13(3): [PMID: 33803862]
  16. Front Cell Infect Microbiol. 2021 Jun 04;11:643214 [PMID: 34150671]
  17. Nat Microbiol. 2019 Apr;4(4):693-700 [PMID: 30692672]
  18. Front Cell Infect Microbiol. 2021 Mar 15;11:616918 [PMID: 33791236]
  19. Viruses. 2020 Nov 06;12(11): [PMID: 33172115]
  20. Bioinformatics. 2017 Aug 01;33(15):2379-2380 [PMID: 28379287]
  21. Nat Microbiol. 2021 Jul;6(7):960-970 [PMID: 34168315]
  22. Virology. 2016 Jul;494:56-66 [PMID: 27081857]
  23. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  24. Nat Commun. 2022 Sep 29;13(1):5710 [PMID: 36175428]
  25. Nat Microbiol. 2018 Jan;3(1):38-46 [PMID: 29133882]
  26. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34083435]
  27. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  28. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  29. Science. 2014 May 23;344(6186):909-13 [PMID: 24855270]
  30. Nature. 2020 Feb;578(7795):425-431 [PMID: 32051592]
  31. Nat Commun. 2022 Sep 24;13(1):5622 [PMID: 36153309]
  32. Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7 [PMID: 27174935]
  33. Viruses. 2017 Apr 03;9(4): [PMID: 28368359]
  34. Mol Biol Evol. 2013 May;30(5):1188-95 [PMID: 23418397]

Grants

  1. 21-14-00360/Russian Science Foundation
  2. 121031300043-8/Ministry of Education and Science

MeSH Term

Humans
Bacteriophages
Virome
Codon, Terminator
Genome, Viral
Genetic Code
RNA, Transfer
Phylogeny

Chemicals

Codon, Terminator
RNA, Transfer

Word Cloud

Created with Highcharts 10.0.0phagegenomesgenomephAss-1stopORFssuppressoranalysisTAGcodonsdatavariousHoweverusephagesfoundhumangutpresencecharacteristicgenestRNAindicatedsimilartwoBK046881_ctckW2BK025033_ct6IQ4metagenomeproposedgenusgroupMetagenomicsprovidesdetectionsequencesmicrobialcommunitiesalternativegeneticcodesprecludescorrectstudyunusual135976bpdenovoassemblyviromeGenomerevealed41includingthreeComparativedescribedsubstantialsimilarityextractedcompletedemonstrated827%864%nucleotideidentityrespectivelysyntenymanydistinctspecieswithinMoreovermonophyleticdivergentcontainingamongSeveralalsocontainindicatingneedtranslationtablesdepositingGenBankGenomesNovelGroupPhagesUseAlternativeGeneticCodeFoundHumanGutViromesbacteriophagecaudoviricetessequencephylogeneticscodonrecodingvirustaxonomy

Similar Articles

Cited By (1)