Innate immune and chronic heat stress responses in sturgeons: Advances and insights from studies on Russian sturgeons.

A M Ferreira, M Aversa-Marnai, A Villarino, V Silva-Álvarez
Author Information
  1. A M Ferreira: Unidad Asociada de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.
  2. M Aversa-Marnai: Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.
  3. A Villarino: Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
  4. V Silva-Álvarez: Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.

Abstract

Chronic stress deteriorates the immune function of fish, thereby increasing their vulnerability to infections. However, the molecular and cellular mechanisms underlying stress-mediated immunosuppression and infection susceptibility in fish remain largely unknown. Understanding these mechanisms will contribute to improving fish welfare and their farm production. Herein, we review the challenges of sturgeon aquaculture in subtropical countries, where current climate change has giving rise to significant temperature increments during summer. This leads to the exposure of fish to stressful conditions during these months. Chronic heat stress deserves attention considering the rapid warming rate of the planet. It is already affecting wild fish populations, with disastrous consequences for sturgeons, which are one of the most endangered fish species in the world. In this context, we discuss the most recent advances through the studies on the effects of chronic heat stress on the innate immune components of sturgeons. To this end, we summarise the findings of studies focusing on the aquaculture of Russian sturgeons and observations made on other species. Special attention is given to acute-phase proteins, as they might be valuable biomarkers of heat stress and infection, with applicability in monitoring the fish health status in farms.

Keywords

References

  1. Fish Shellfish Immunol. 2017 Jul;66:325-333 [PMID: 28511951]
  2. Front Microbiol. 2022 Mar 07;13:755369 [PMID: 35356512]
  3. J Vet Med Sci. 2018 Mar 24;80(3):421-426 [PMID: 29367518]
  4. Proteomics. 2010 Mar;10(5):963-75 [PMID: 20131326]
  5. Nat Ecol Evol. 2020 Jun;4(6):841-852 [PMID: 32231327]
  6. Protein Pept Lett. 2017;24(1):78-89 [PMID: 27903234]
  7. Clin Exp Immunol. 1978 Apr;32(1):119-24 [PMID: 668189]
  8. Dev Comp Immunol. 1998 Mar-Apr;22(2):185-94 [PMID: 9639088]
  9. Animals (Basel). 2021 Jan 08;11(1): [PMID: 33430015]
  10. Fish Shellfish Immunol. 2017 Jun;65:267-277 [PMID: 28442417]
  11. J Fish Dis. 2011 Aug;34(8):619-27 [PMID: 21762173]
  12. Fish Shellfish Immunol. 2013 Jan;34(1):296-304 [PMID: 23178260]
  13. J Microbiol Biotechnol. 2019 Aug 28;29(8):1324-1334 [PMID: 31370117]
  14. Dev Comp Immunol. 2016 Feb;55:12-20 [PMID: 26454233]
  15. Fish Shellfish Immunol. 2014 Oct;40(2):545-55 [PMID: 25130144]
  16. Fish Shellfish Immunol. 2022 Feb;121:404-417 [PMID: 34971737]
  17. Fish Shellfish Immunol. 2021 Nov;118:283-293 [PMID: 34537337]
  18. Fish Shellfish Immunol. 2022 Sep;128:505-522 [PMID: 35985628]
  19. J Hered. 2014 Jul-Aug;105(4):521-531 [PMID: 24829364]
  20. Front Genet. 2019 Sep 05;10:776 [PMID: 31543900]
  21. J Exp Biol. 2023 May 15;226(10): [PMID: 37102716]
  22. BMC Genomics. 2023 Jan 3;24(1):2 [PMID: 36597034]
  23. Fish Shellfish Immunol. 2018 Mar;74:530-539 [PMID: 29353079]
  24. Sci Rep. 2019 Mar 18;9(1):4776 [PMID: 30886242]
  25. Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4168-73 [PMID: 16537503]
  26. Dev Comp Immunol. 2008;32(6):693-705 [PMID: 18078992]
  27. Ecotoxicol Environ Saf. 2023 Jan 1;249:114366 [PMID: 36508793]
  28. Sci Total Environ. 2010 Jul 15;408(16):3176-88 [PMID: 20435339]
  29. Fish Physiol Biochem. 2017 Aug;43(4):987-997 [PMID: 28236008]
  30. Front Endocrinol (Lausanne). 2019 Feb 12;10:62 [PMID: 30809193]
  31. Vet Immunol Immunopathol. 2011 Aug 15;142(3-4):207-18 [PMID: 21640390]
  32. Fish Shellfish Immunol. 2015 Aug;45(2):277-85 [PMID: 25917975]
  33. J Fish Dis. 2018 Oct;41(10):1559-1569 [PMID: 30105751]
  34. BMC Genomics. 2018 Oct 1;19(1):719 [PMID: 30285610]
  35. J Pharm Bioallied Sci. 2011 Jan;3(1):118-27 [PMID: 21430962]
  36. Int J Mol Sci. 2022 Aug 22;23(16): [PMID: 36012731]
  37. Dev Comp Immunol. 2011 Dec;35(12):1366-75 [PMID: 21782845]
  38. Mol Biol Rep. 2010 Mar;37(3):1523-9 [PMID: 19434513]
  39. Biol Rev Camb Philos Soc. 2010 Nov;85(4):703-27 [PMID: 20105154]
  40. Fish Shellfish Immunol. 2017 Feb;61:100-110 [PMID: 28017903]
  41. N Engl J Med. 1999 Feb 11;340(6):448-54 [PMID: 9971870]
  42. Fish Shellfish Immunol. 2019 May;88:207-216 [PMID: 30807859]
  43. Fish Physiol Biochem. 2020 Oct;46(5):1653-1664 [PMID: 32583280]
  44. Prog Mol Biol Transl Sci. 2012;105:113-50 [PMID: 22137431]
  45. Fish Shellfish Immunol. 2017 Sep;68:443-451 [PMID: 28743624]
  46. BMC Genomics. 2018 Feb 12;19(1):133 [PMID: 29433420]
  47. Eur J Cell Biol. 2012 Jun-Jul;91(6-7):496-505 [PMID: 22093287]
  48. Fish Shellfish Immunol. 2012 May;32(5):662-9 [PMID: 22326761]
  49. Dev Comp Immunol. 2007;31(11):1183-96 [PMID: 17449095]
  50. J Fish Biol. 2014 Apr;84(4):885-96 [PMID: 24673686]
  51. Sci Rep. 2020 Dec 17;10(1):22162 [PMID: 33335147]
  52. Proc Biol Sci. 1993 Sep 22;253(1338):263-70 [PMID: 7694301]
  53. Comp Biochem Physiol Part D Genomics Proteomics. 2022 Mar;41:100950 [PMID: 34973489]
  54. Annu Rev Immunol. 2005;23:337-66 [PMID: 15771574]
  55. Mol Immunol. 2007 Jan;44(4):295-301 [PMID: 16630661]
  56. J Immunol. 1997 Jan 1;158(1):384-92 [PMID: 8977214]
  57. Mol Phylogenet Evol. 2007 Mar;42(3):854-62 [PMID: 17158071]
  58. Fish Shellfish Immunol. 2017 Jun;65:42-51 [PMID: 28336487]
  59. Fish Shellfish Immunol. 2015 Aug;45(2):680-8 [PMID: 25989623]
  60. Fish Shellfish Immunol. 2016 Aug;55:699-716 [PMID: 27368537]
  61. Integr Comp Biol. 2013 Oct;53(4):539-44 [PMID: 23892371]
  62. Vet Immunol Immunopathol. 2007 Jan 15;115(1-2):172-8 [PMID: 17095098]
  63. Dev Comp Immunol. 1999 Jan-Feb;23(1):61-70 [PMID: 10220069]
  64. Fish Shellfish Immunol. 2021 Jan;108:32-41 [PMID: 33249124]
  65. J Immunol. 1993 Aug 15;151(4):2159-65 [PMID: 8345200]
  66. Dev Comp Immunol. 2018 Oct;87:1-11 [PMID: 29777721]
  67. Fish Shellfish Immunol. 2019 Oct;93:888-894 [PMID: 31425830]
  68. Fish Shellfish Immunol. 2018 Dec;83:249-261 [PMID: 30219387]
  69. Biomed Res Int. 2022 Sep 1;2022:8547379 [PMID: 36093404]
  70. Conserv Physiol. 2016 Aug 26;4(1):cow031 [PMID: 27766153]
  71. Fish Shellfish Immunol Rep. 2022 Aug 24;3:100067 [PMID: 36419612]
  72. Fish Shellfish Immunol. 2014 Aug;39(2):185-7 [PMID: 24852342]
  73. Vet Res. 2018 Feb 1;49(1):11 [PMID: 29391073]
  74. Fish Shellfish Immunol. 2009 Mar;26(3):396-405 [PMID: 19100836]
  75. Proteomics Clin Appl. 2016 Nov;10(11):1077-1092 [PMID: 27274000]
  76. Comp Biochem Physiol Part D Genomics Proteomics. 2021 Dec;40:100879 [PMID: 34607242]
  77. Eur J Histochem. 2017 Nov 28;61(4):2850 [PMID: 29313594]
  78. Nature. 1979 Mar 15;278(5701):259-61 [PMID: 423976]
  79. Dev Comp Immunol. 2006;30(4):393-406 [PMID: 16139357]
  80. Animals (Basel). 2019 Aug 20;9(8): [PMID: 31434296]
  81. Fish Shellfish Immunol. 2013 Nov;35(5):1566-76 [PMID: 24036330]
  82. Dev Comp Immunol. 2003 Dec;27(10):859-74 [PMID: 12880636]
  83. Fish Physiol Biochem. 2014 Aug;40(4):1105-13 [PMID: 24482095]
  84. Scand J Immunol. 2020 Jul;92(1):e12882 [PMID: 32243627]
  85. J Appl Anim Welf Sci. 2014;17(1):29-42 [PMID: 24484309]
  86. Fish Shellfish Immunol. 2017 Aug;67:655-666 [PMID: 28655594]
  87. Pathogens. 2020 Feb 21;9(2): [PMID: 32098100]
  88. Fish Shellfish Immunol. 2019 May;88:508-517 [PMID: 30862517]
  89. Fish Physiol Biochem. 2019 Aug;45(4):1419-1429 [PMID: 31073676]
  90. Sci Rep. 2018 Dec 18;8(1):17925 [PMID: 30560883]
  91. Fish Shellfish Immunol. 2015 Nov;47(1):521-7 [PMID: 26455663]
  92. Dev Comp Immunol. 1990 Winter;14(1):49-58 [PMID: 2338157]
  93. J Biol Chem. 2005 May 13;280(19):18562-7 [PMID: 15705572]
  94. Comp Biochem Physiol Part D Genomics Proteomics. 2023 Mar;45:101058 [PMID: 36657229]
  95. Blood. 2006 Sep 1;108(5):1751-7 [PMID: 16735604]
  96. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13698-703 [PMID: 22869754]
  97. Fish Shellfish Immunol. 2016 Jun;53:50-7 [PMID: 26973022]
  98. Gen Comp Endocrinol. 2007 Oct-Dec;154(1-3):98-104 [PMID: 17632105]
  99. Biochim Biophys Acta. 1996 Nov 15;1317(2):84-94 [PMID: 8950192]
  100. Dev Comp Immunol. 2003 Jun-Jul;27(6-7):579-88 [PMID: 12697314]
  101. Fish Shellfish Immunol. 2019 May;88:117-125 [PMID: 30802630]
  102. Comp Biochem Physiol A Mol Integr Physiol. 2003 Jun;135(2):291-302 [PMID: 12781829]
  103. Sci Rep. 2019 Jan 30;9(1):995 [PMID: 30700796]
  104. Dev Comp Immunol. 2017 Nov;76:189-199 [PMID: 28625747]
  105. BMC Genomics. 2011 Mar 07;12:141 [PMID: 21385383]
  106. Elife. 2014 Jul 29;3:e03206 [PMID: 25073702]
  107. Dev Comp Immunol. 2009;33(1):35-45 [PMID: 18760303]
  108. J Biochem. 1993 Mar;113(3):277-84 [PMID: 8486600]
  109. Genetica. 2010 Jul;138(7):745-56 [PMID: 20386959]
  110. Dev Comp Immunol. 2009 Jul;33(7):848-57 [PMID: 19428486]

Word Cloud

Created with Highcharts 10.0.0fishstressheatsturgeonsChronicimmunestudiesmechanismsinfectionaquacultureattentionspecieschronicRussianInnatedeterioratesfunctiontherebyincreasingvulnerabilityinfectionsHowevermolecularcellularunderlyingstress-mediatedimmunosuppressionsusceptibilityremainlargelyunknownUnderstandingwillcontributeimprovingwelfarefarmproductionHereinreviewchallengessturgeonsubtropicalcountriescurrentclimatechangegivingrisesignificanttemperatureincrementssummerleadsexposurestressfulconditionsmonthsdeservesconsideringrapidwarmingrateplanetalreadyaffectingwildpopulationsdisastrousconsequencesoneendangeredworldcontextdiscussrecentadvanceseffectsinnatecomponentsendsummarisefindingsfocusingobservationsmadeSpecialgivenacute-phaseproteinsmightvaluablebiomarkersapplicabilitymonitoringhealthstatusfarmsresponsessturgeons:AdvancesinsightsAcipenserAcute-phaseproteinInfectionimmunitySerumamyloidStress-inducedmetabolicreprogrammingSturgeon

Similar Articles

Cited By