PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas.

Karla Gisel Carreón-Anguiano, Sara Elena Vila-Luna, Luis Sáenz-Carbonell, Blondy Canto-Canche
Author Information
  1. Karla Gisel Carreón-Anguiano: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico. ORCID
  2. Sara Elena Vila-Luna: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico.
  3. Luis Sáenz-Carbonell: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico.
  4. Blondy Canto-Canche: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico. ORCID

Abstract

Phytoplasmas are the causal agents of more than 100 plant diseases in economically important crops. Eleven genomes have been fully sequenced and have allowed us to gain a better understanding of the biology and evolution of phytoplasmas. Effectors are key players in pathogenicity and virulence, and their identification and description are becoming an essential practice in the description of phytoplasma genomes. This is of particular importance because effectors are possible candidates for the development of new strategies for the control of plant diseases. To date, the prediction of effectors in phytoplasmas has been a great challenge; the reliable comparison of effectoromes has been hindered because research teams have used the combination of different programs in their predictions. This is not trivial since significant differences in the results can arise, depending on the predictive pipeline used. Here, we tested different predictive pipelines to create the PhyEffector algorithm; the average value of the F1 score for PhyEffector was 0.9761 when applied to different databases or genomes, demonstrating its robustness as a predictive tool. PhyEffector can recover both classical and non-classical phytoplasma effectors, making it an invaluable tool to accelerate effectoromics in phytoplasmas.

Keywords

References

  1. Microbiol Res. 2017 Jun;199:57-66 [PMID: 28454710]
  2. Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6416-21 [PMID: 19329488]
  3. Environ Microbiol. 2010 Jan;12(1):1-12 [PMID: 19624707]
  4. Biology (Basel). 2022 Jun 23;11(7): [PMID: 36101334]
  5. FEMS Microbiol Lett. 2009 Apr;293(1):92-101 [PMID: 19222574]
  6. Front Plant Sci. 2019 Apr 05;10:418 [PMID: 31024592]
  7. Sci Rep. 2021 May 27;11(1):11222 [PMID: 34045641]
  8. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  9. Curr Opin Plant Biol. 2018 Aug;44:39-48 [PMID: 29547737]
  10. Annu Rev Phytopathol. 2011;49:175-95 [PMID: 21838574]
  11. Mol Plant Pathol. 2018 Dec;19(12):2623-2634 [PMID: 30047227]
  12. J Insect Physiol. 2021 Jan;128:104176 [PMID: 33253714]
  13. BMC Microbiol. 2015 Sep 30;15:193 [PMID: 26424332]
  14. Biology (Basel). 2021 Mar 15;10(3): [PMID: 33804178]
  15. Plant Physiol. 2013 Aug;162(4):2005-14 [PMID: 23784461]
  16. Sci Rep. 2022 May 17;12(1):8249 [PMID: 35581398]
  17. Mol Plant Pathol. 2020 Oct;21(10):1322-1336 [PMID: 32813310]
  18. J Mol Biol. 2004 Jul 16;340(4):783-95 [PMID: 15223320]
  19. Front Biosci. 2007 Jan 01;12:673-89 [PMID: 17127328]
  20. Plant Physiol. 2011 Oct;157(2):831-41 [PMID: 21849514]
  21. Front Microbiol. 2022 Feb 28;13:773608 [PMID: 35300489]
  22. New Phytol. 2014 May;202(3):838-848 [PMID: 24552625]
  23. Curr Opin Plant Biol. 2008 Aug;11(4):449-56 [PMID: 18639483]
  24. Front Microbiol. 2020 Jul 10;11:1531 [PMID: 32754131]
  25. Front Microbiol. 2013 Aug 14;4:230 [PMID: 23966988]
  26. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  27. Hortic Res. 2022 Jan 5;9: [PMID: 35043187]
  28. Mol Plant Pathol. 2008 Jul;9(4):403-23 [PMID: 18705857]
  29. Mol Plant Microbe Interact. 2009 Jan;22(1):18-30 [PMID: 19061399]
  30. PLoS Biol. 2014 Apr 08;12(4):e1001835 [PMID: 24714165]
  31. Mol Plant Microbe Interact. 2012 Jul;25(7):889-95 [PMID: 22432876]
  32. Front Microbiol. 2021 Nov 11;12:766221 [PMID: 34858377]
  33. Int J Mol Sci. 2019 Nov 18;20(22): [PMID: 31752214]
  34. Mol Phylogenet Evol. 2020 Aug;149:106826 [PMID: 32283136]
  35. Plants (Basel). 2022 May 27;11(11): [PMID: 35684198]
  36. PLoS One. 2013 Apr 23;8(4):e62770 [PMID: 23626855]
  37. Int J Mol Sci. 2023 Feb 24;24(5): [PMID: 36901925]
  38. BMC Microbiol. 2005 Oct 07;5:58 [PMID: 16212653]
  39. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  40. Syst Appl Microbiol. 2019 Mar;42(2):117-127 [PMID: 30455068]
  41. Cell. 2021 Sep 30;184(20):5201-5214.e12 [PMID: 34536345]
  42. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  43. Front Microbiol. 2023 Mar 09;14:1123783 [PMID: 36970684]
  44. Trends Microbiol. 2023 Sep;31(9):916-932 [PMID: 37085348]
  45. Sci Rep. 2016 Dec 09;6:38610 [PMID: 27934958]
  46. Int J Mol Sci. 2022 Nov 05;23(21): [PMID: 36362353]

Grants

  1. FOP16-2021-01 No. 320993/CONAHCyT

Word Cloud

Created with Highcharts 10.0.0PhyEffectorphytoplasmaseffectorsgenomesdifferentpredictivePhytoplasmasplantdiseasesEffectorsdescriptionphytoplasmausedcanalgorithmtoolclassicalnon-classicalcausalagents100economicallyimportantcropsElevenfullysequencedallowedusgainbetterunderstandingbiologyevolutionkeyplayerspathogenicityvirulenceidentificationbecomingessentialpracticeparticularimportancepossiblecandidatesdevelopmentnewstrategiescontroldatepredictiongreatchallengereliablecomparisoneffectoromeshinderedresearchteamscombinationprogramspredictionstrivialsincesignificantdifferencesresultsarisedependingpipelinetestedpipelinescreateaveragevalueF1score09761applieddatabasesdemonstratingrobustnessrecovermakinginvaluableaccelerateeffectoromicsFirstAlgorithmIdentifiesClassicalNon-Classicalcroppathogens

Similar Articles

Cited By